• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Mammals share mechanisms controlling the heart with a 400 million-year-old fish

Bioengineer by Bioengineer
March 5, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Gustavo M. Oda

Primitive air-breathing fish, whose direct ancestors first appeared around 400 million years ago, show mechanisms controlling the heart which were previously considered to be found only in mammals – according to a new study.

Mammals show an increase in heart rate when breathing in and a decrease during expiration – a cardiorespiratory process known as respiratory sinus arrhythmia (RSA). This process and its underlying control mechanisms have been considered by many scientists to be solely mammalian but the present study questions this assumption.

Scientists in Britain and Brazil studied the South American lungfish, Lepidosiren paradoxa, and discovered that systems enabling this primitive vertebrate to control blood flow during bouts of air-breathing have close similarities to those identified in mammals.

Lungfish are members of an ancient group of lobe-finned fishes (Class Dipnoi), having a continuous fossil record originating in the Devonian period around 400 million years ago. This was a time when the first vertebrates crawled on to land to give rise to amphibians and over succeeding millennia reptiles, birds and mammals.

With their proto-lungs and proto-limbs, lungfish represent the earliest stage in the evolution of air-breathing vertebrates. They inhabit tropical, freshwater pools and slow-flowing rivers, which often contain very low levels of dissolved oxygen and can disappear during the dry season.

The lungfish shares a periodic breathing pattern with the terrestrial vertebrates, rising to the water's surface at regular intervals to ventilate its lung-like air-breathing organ and depending exclusively on these lungs for oxygen uptake during drought.

Led by experts at the University of Birmingham and the Federal University of São Carlos (UFSCar), in São Paulo, the international team published its findings in Science Advances.

Professor Ted Taylor, from the University of Birmingham, said: "When lungfish gulp air at the water's surface, their heart rate instantly increases – signalling a diversion of blood to the creature's lungs.

"This is possible because the animal has an undivided heart, enabling the proportion of blood diverted to the lungs to be varied; unlike mammals, as we have a completely divided heart with equal volumes of blood pumped separately to lungs and body with each heartbeat.

"Our study established a clear function in lungfish for these increases in heart rate in maximising oxygen uptake during each air breath that has not been definitively demonstrated for RSA in mammals. This suggests that it may be a relic of their link to ancient amphibious ancestors."

Professor Taylor added that "The lungfish has a relatively complex control system which generates these respiration-related changes in heart rate, with properties that anticipate those described for mammals.

"We found that these include multiple locations for nerve cells in the brainstem that innervate the heart with insulated fibres that conduct rapid impulses, causing an instantaneous cardiac response to each air-breath."

This illustration in a fish with a proven ancient lineage of a highly evolved system controlling variations in heart rate suggests that its evolution was necessarily linked to the advent of air breathing over primitive vertebrate lungs rather than the much later appearance of mammals.

This understanding questions assumptions over the primacy of mammals made by some biomedical physiologists and many psychobiologists, demonstrating that "primitive" mechanisms though early are not necessarily simple.

###

For more information, please contact Tony Moran, International Communications Manager, University of Birmingham on +44 (0) 121 414 8254 or +44 (0)782 783 2312. For out-of-hours enquiries, please call +44 (0) 7789 921 165.

Picture caption – please credit Gustavo M. Oda: * South American lungfish, Lepidosiren paradoxa

Notes for editors

The University of Birmingham is ranked amongst the world's top 100 institutions, its work brings people from across the world to Birmingham, including researchers and teachers and more than 5,000 international students from over 150 countries.

The paper: 'Cardiorespiratory interactions previously identified as mammalian are present in the primitive lungfish' (Sci. Adv. 2018;4: eaaq0800) was authored by:

  • Diana A. Monteiro – Department of Physiological Sciences, Federal University of São Carlos (UFSCar),
  • Edwin W. Taylor – School of Biosciences, University of Birmingham
  • Marina R. Sartori – Department of Zoology, São Paulo State University (UNESP)
  • André L. Cruz – Institute of Biology, Federal University of Bahia (UFBA)
  • Francisco T. Rantin – Department of Physiological Sciences, Federal University of São Carlos (UFSCar)
  • Cleo A. C. Leite – Department of Physiological Sciences, Federal University of São Carlos (UFSCar)

Media Contact

Tony Moran
[email protected]
44-121-414-8254
@unibirmingham

http://www.bham.ac.uk

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Exploring the GT92 Gene Family in Cotton

October 11, 2025
blank

Methylome Changes Drive Fiber Differentiation in Cotton

October 11, 2025

New Framework Uncovers Differential Chromatin Interactions

October 11, 2025

Sex Differences in Pig Blood Gene Expression

October 11, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1213 shares
    Share 484 Tweet 303
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    99 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    88 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unlocking Wild Apple’s Genomics Through Transcriptome Profiling

Quercetin: Targeted Quorum Sensing Inhibitor for Pseudomonas

Exploring the GT92 Gene Family in Cotton

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.