• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Male sexual behavior linked to elevated male sex hormone receptors in…

Bioengineer by Bioengineer
January 25, 2018
in Biology, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Kory Gozjack

ATLANTA–Sex-changing fish exhibit differences in androgen receptor (AR) expression in muscles that are highly sensitive to androgens (male sex hormones) and essential for male courtship behavior, according to a Georgia State University study.

Androgen signaling is a critical regulator of male-typical reproductive behavior in vertebrates. This study found androgen receptor expression is also important in Lythrypnus dalli or the bluebanded goby, a bi-directional hermaphroditic fish that can undergo rapid adult sex change in either direction. Given appropriate social stimuli, these fish can transform reproductive tissue function and begin to reproduce as the opposite sex in under two weeks.

Bluebanded gobies live in small harems of one dominant male and multiple subordinate females. Their reproductive behavior is sexually dimorphic, with only males courting females, defending nests and caring for offspring. Male courtship behavior is composed of rapid 'jerk swims,' during which the pelvic and dorsal fins are extended and retracted, via the activation of the supracarinalis muscle.

The researchers discovered that males express more AR in the supracarinalis muscle relative to females. Higher AR expression in this muscle was also associated with greater rates of courtship and aggressive displays. The study was published in the journal PLOS One.

The researchers collected 12 male and 36 female bluebanded gobies near the University of Southern California's Wrigley Institute of Environmental Studies in Santa Catalina Island, Calif. by scuba diving and using hand nets. Animals were placed in 12 social harems of one male and three females, and each group was placed in an aquarium at the Wrigley Institute for Environmental Studies.

Male behavior (aggressive approaches and jerk swims) directed at females in the social group was observed over the course of three days. Then, sections of muscle and spinal cord from the animals were examined using antibodies specific to the androgen receptor, a high-end imaging microscope and image capture software.

"A simple process of screening for sex differences in the expression of AR allowed us to identify an important muscle group involved in the regulation of male sexual behavior," said Dr. Matthew Grober, associate professor of biology at Georgia State.

Though AR is also abundantly expressed in the spinal cord of these fish, there was no sex difference in the number of spinal motoneurons expressing AR, suggesting that female spinal circuits do not require elevated AR expression during sex change in order to generate male courtship/nesting behavior. In animals that are sexually plastic, rapid up-regulation of muscle AR may be a critical step in the initiation of male-typical behavior in a female individual.

###

Co-authors of the study include first author Eric Schuppe, who did this study as part of his master's degree program at Georgia State and is now at Wake Forest University; Kevin Thonkulpitak, Cathleen Drilling and Michael Black of Georgia State; and Dr. Devaleena Pradhan, formerly of Georgia State and now at the University of California, Los Angeles.

The study was funded by the National Science Foundation and Georgia Research Alliance.

To read the study visit, http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177711.

Media Contact

LaTina Emerson
[email protected]
404-413-1353
@GSU_News

Home

Original Source

http://news.gsu.edu/2017/06/08/sex-changing-fish-male-typical-sexual-behavior/

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Characterizing UGT Family: Key Role in Blueberry Development

November 16, 2025

Loliolide: A Valuable Green Monoterpenoid Explored

November 16, 2025

Impact of Social Factors on Prediabetes Mortality

November 16, 2025

Myocardium Suppression After Remdesivir in Congenital Heart Patients

November 16, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • Neurological Impacts of COVID and MIS-C in Children

    88 shares
    Share 35 Tweet 22
>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Characterizing UGT Family: Key Role in Blueberry Development

Loliolide: A Valuable Green Monoterpenoid Explored

Impact of Social Factors on Prediabetes Mortality

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.