• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Making waves in oceanography

Bioengineer by Bioengineer
April 15, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research finds upwelling defies prior theories

IMAGE

Credit: Jochen Kaempf, Flinders University

A new scientific discovery in Australia by Flinders University has recorded for the first time how ghost currents and sediments can ‘undo’ the force of gravity.

The new theory, just published in the Journal of Marine Systems, helps explain obscure events in which suspended sediment particles mysteriously move upward, not downward, on the slope of submarine canyons of the deep sea.
While this activity seems to contradict the laws of gravity, Flinders University physical oceanographer Associate Professor Jochen Kaempf has found an answer, devising the first scientific explanation of the observed upslope sediment transport.

“To put it simply, the vehicle of this transport are currents that, while carrying sediments around and keeping them in suspension, leave the ambient seawater and its dissolved properties almost unchanged,” he explains after studying the phenomena for two years.

“Such current, that I call ghost currents, adhere to the laws of physics and can move sediment particles over vast distances relative to the ambient seawater, also in directions opposite to the buoyancy force.”

Associate Professor Kaempf believes that this astonishing new finding constitutes a breakthrough in the understanding of biogeochemical cycles at continental margins.

Suspended sediment particles in oceans are up to three times heavier than seawater of the same volume.

Hence, due to Archimedes law of buoyancy, which is an extension of Newton’s law of gravity, sediment particles generally sink downward in the oceans, he says.

However, on continental margins, sediment particles can also form turbidity currents, which are rapid downslope flows of sediment-water mixtures on continental margins.

“My study may also help to better understand the feeding behaviour of suspension feeders including baleen whales and krill that often feed on particulate organic matter near the head of submarine canyons.”

###

The article, On the upslope sediment transport at continental margins (2021) by J Kämpf, has been published in the Journal of Marine Systems, Volume 219, https://doi.org/10.1016/j.jmarsys.2021.103546

Media Contact
Jochen Kaempf
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.jmarsys.2021.103546

Tags: Earth ScienceHydrology/Water ResourcesMolecular PhysicsOceanographyParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

Neighboring Groups Speed Up Polymer Self-Deconstruction

Neighboring Groups Speed Up Polymer Self-Deconstruction

November 28, 2025
blank

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    105 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Topical Melatonin Boosts Healing of Diabetic Foot Ulcers

Exploring Traditional Plant Remedies in Menz Keya Gebreal

Exploring Naming Equity in Perinatal Substance Use Policy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.