• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Magnetization by laser pulse

Bioengineer by Bioengineer
December 7, 2023
in Chemistry
Reading Time: 4 mins read
0
If a strong laser pulse hits an iron alloy, the material melts briefly at the irradiated point and a tiny magnetic area forms.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

To magnetize an iron nail, one simply has to stroke its surface several times with a bar magnet. Yet, there is a much more unusual method: A team led by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) discovered some time ago that a certain iron alloy can be magnetized with ultrashort laser pulses. The researchers have now teamed up with the Laserinstitut Hochschule Mittweida (LHM) to investigate this process further. They discovered that the phenomenon also occurs with a different class of materials – which significantly broadens potential application prospects. The working group presents its findings in the scientific journal Advanced Functional Materials (DOI: 10.1002/adfm.202311951).

If a strong laser pulse hits an iron alloy, the material melts briefly at the irradiated point and a tiny magnetic area forms.

Credit: HZDR / Sander Münster

To magnetize an iron nail, one simply has to stroke its surface several times with a bar magnet. Yet, there is a much more unusual method: A team led by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) discovered some time ago that a certain iron alloy can be magnetized with ultrashort laser pulses. The researchers have now teamed up with the Laserinstitut Hochschule Mittweida (LHM) to investigate this process further. They discovered that the phenomenon also occurs with a different class of materials – which significantly broadens potential application prospects. The working group presents its findings in the scientific journal Advanced Functional Materials (DOI: 10.1002/adfm.202311951).

The unexpected discovery was made back in 2018. When the HZDR team irradiated a thin layer of an iron-aluminum alloy with ultrashort laser pulses, the non-magnetic material suddenly became magnetic. The explanation: The laser pulses rearrange the atoms in the crystal in such a way that the iron atoms move closer together, and thus forming a magnet. The researchers were then able to demagnetize the layer again with a series of weaker laser pulses. This enabled them to discover a way of creating and erasing tiny “magnetic spots” on a surface.

However, the pilot experiment still left some questions unanswered. “It was unclear whether the effect only occurs in the iron-aluminum alloy or also in other materials,” explains HZDR physicist Dr. Rantej Bali. “We also wanted to try tracking the time progression of the process.” For further investigation, he teamed up with Dr. Theo Pflug from the LHM and colleagues from the University of Zaragoza in Spain.

Flip book with laser pulses

The experts focused specifically on an iron-vanadium alloy. Unlike the iron-aluminum alloy with its regular crystal lattice, the atoms in the iron-vanadium alloy are arranged more chaotically, forming an amorphous, glass-like structure. In order to observe what happens upon laser irradiation, the physicists used a special method: The pump-probe method.

“First, we irradiate the alloy with a strong laser pulse, which magnetizes the material,” explains Theo Pflug. “Simultaneously, we use a second, weaker pulse that is reflected on the material surface.”

The analysis of the reflected laser pulse provides an indication of the material’s physical properties. This process is repeated several times, whereby the time interval between the first “pump” pulse and the subsequent “probe” pulse is continually extended.

As a result, a time series of reflection data is obtained, which allows to characterize the processes being triggered by the laser excitation. “The whole procedure is similar to generating a flip book,” says Pflug. “Likewise, a series of individual images that animate when viewed in quick succession.”

Rapid melting

The result: Although it has a different atomic structure than the iron-aluminum compound, the iron-vanadium alloy can also be magnetized via laser. “In both cases, the material melts briefly at the irradiation point”, explains Rantej Bali. “This causes the laser to erase the previous structure so that a small magnetic area is generated in both alloys.”

An encouraging result: Apparently, the phenomenon is not limited to a specific material structure but can be observed in diverse atomic arrangements.

The team is also keeping track of the temporal dynamics of the process: “At least we now know in which time scales something happens,” explains Theo Pflug. “Within femtoseconds, the laser pulse excites the electrons in the material. Several picoseconds later, the excited electrons transfer their energy to the atomic nuclei.”

Consequently, this energy transfer causes the rearrangement into a magnetic structure, which is stabilized by the subsequent rapid cooling. In follow-up experiments, the researchers aim to observe exactly how the atoms rearrange themselves by examining the magnetization process with intense X-rays.

Sights set on applications

Although still in the early stages, this work already provides initial ideas for possible applications: For example, placing tiny magnets on a chip surface via laser is conceivable. “This could be useful for the production of sensitive magnetic sensors, such as those used in vehicles,” speculates Rantej Bali. “It could also find possible applications in magnetic data storage.”

Additionally, the phenomenon appears relevant for a new type of electronics, namely spintronics. Here, magnetic signals should be used for digital computing processes instead of electrons passing through transistors as usual – offering a possible approach to computer technology of the future.



Journal

Advanced Functional Materials

DOI

10.1002/adfm.202311951

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Laser-Induced Positional and Chemical Lattice Reordering Generating Ferromagnetism

Article Publication Date

21-Nov-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mosquito Gene Response Reveals Japanese Encephalitis Entry

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

Poly-L-Histidine-Coated Nanoparticles for Targeted Doxorubicin Delivery

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.