• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Magnetic stir bars carry ‘memory’ from previous flasks and tubes

Bioengineer by Bioengineer
March 20, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Surprisingly high level of surface contaminations of magnetic stir bars escapes regular cleaning and brings highly reactive traces of metal species from previous experiments to the next ones

IMAGE

Credit: Evgeniy O. Pentsak

Surprisingly high level of surface contaminations of magnetic stir bars escapes regular cleaning and brings highly reactive traces of metal species from previous experiments to the next ones.

With electron microscopy experiments and DFT calculations it was shown that plastic surface of magnetic stir bars can form reactive centers which absorb metal atoms from solution followed by growth of metal nanoparticles. The process readily takes place on the surface of PTFE-coated magnetic stir bars, ubiquitously used in modern chemistry and biology labs.

The regular in-use magnetic stir bars carry bunches of metal nanoparticles on their surface. It was demonstrated that the presence of a previously used magnetic stir bar in reaction medium is sufficient for initiating a full-scale catalytic reaction (promoted by leaching of metal species from the PTFE surface).

Magnetic stir bars are commonly regarded as reusable consumables, and in many labs they last for months and years. This study shows that in a regular catalysis lab almost all magnetic stir bars become permanently contaminated with metal nanoparticles after about a week of use. Regular routine cleaning procedures do not remove such contamination completely. Indeed, subsequent release of metal traces in the next reactions is unacceptable even in small quantitates, as it may add critical bias to many experimental settings.

In this study the authors examined stir bars from different laboratories, and only 1 bar out of 60 was found uncontaminated. They further investigated the origins of contamination, performed on-line ESI-MS monitoring of the contamination process and demonstrated its impact on catalysis.

Metal contamination is a critical issue, which has paramount importance for the development of high-performance catalytic and synthetic systems. Although several issues dealing with metal contamination have been already discussed in literature, the chemical reactivity of PTFE remains underexplored, as it was believed to be an inert material.

It is difficult to imagine an article, which will intrigue every chemist or biochemist to read. But this one is. Magnetic stirrers are indispensable for treatment of solutions. Easy contamination and chemical activity of stir bars is like a bombshell for the research community.

###

Media Contact
Evgeniy O. Pentsak
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acscatal.9b00294

Tags: BiochemistryChemistry/Physics/Materials Sciences
Share73Tweet8Share2ShareShareShare2

Related Posts

Michigan Startup Innovates Clothing Labels to Enhance Recycling and Brand Authentication

Michigan Startup Innovates Clothing Labels to Enhance Recycling and Brand Authentication

November 5, 2025
Kono Honored with American Physical Society’s Isakson Prize

Kono Honored with American Physical Society’s Isakson Prize

November 5, 2025

Resilient Order Emerges from Chasing and Splashing

November 5, 2025

Breakthrough in Attosecond Plasma Lens Technology Unveiled

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

[6]-Shogaol Inhibits 3CLpro and SARS-CoV-2 Infection

Psychological Factors Influencing Nursing Students’ Success

Reassessing AMH’s Impact in DHEA PCOS Research

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.