• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Machines see the future for patients diagnosed with brain tumors

Bioengineer by Bioengineer
March 13, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For patients diagnosed with glioma, a deadly form of brain tumor, the future can be very uncertain. While gliomas are often fatal within two years of diagnosis, some patients can survive for 10 years or more. Predicting the course of a patient's disease at diagnosis is critical in selecting the right therapy and in helping patients and their families to plan their lives.

Researchers at Emory and Northwestern Universities recently developed artificial intelligence (AI) software that can predict the survival of patients diagnosed with glioma by examining data from tissue biopsies. The approach, described in Proceedings of the National Academy of Sciences, is more accurate than the predictions of doctors who undergo years of highly-specialized training for the same purpose.

Doctors currently use a combination of genomic tests and microscopic examination of tissues to predict how a patient's disease will behave clinically or respond to therapy. While genomic testing is reliable, these tests do not completely explain patient outcomes, and so microscopic examination is used to further refine prognosis. Microscopic examination, however, is very subjective, with different pathologists often providing different interpretations of the same case. These interpretations can impact critical decisions like whether a patient enrolls in an experimental clinical trial or receives radiation therapy as part of their treatment.

"Genomics have significantly improved how we diagnose and treat gliomas, but microscopic examination remains subjective. There are large opportunities for more systematic and clinically meaningful data extraction using computational approaches," says Daniel J. Brat, MD, PhD, the lead neuropathologist on the study, who began developing the software while at Emory University and the Winship Cancer Institute. Brat currently is chair of pathology at Northwestern University Feinberg School of Medicine.

The researchers used an approach called deep-learning to train the software to learn visual patterns associated with patient survival using microscopic images of brain tumor tissue samples. The breakthrough resulted from combining this advanced technology with more conventional methods that statisticians use to analyze patient outcomes. When the software was trained using both images and genomic data, its predictions of how long patients survive beyond diagnosis were more accurate than those of human pathologists. The study used public data produced by the National Cancer Institute's Cancer Genome Atlas project to develop and evaluate the algorithm.

"The eventual goal is to use this software to provide doctors with more accurate and consistent information. We want to identify patients where treatment can extend life," says Lee A.D. Cooper, PhD, the study's lead author, a professor of biomedical informatics at Emory University School of Medicine and member of the Winship Cancer Institute. "What the pathologists do with a microscope is amazing. That an algorithm can learn a complex skill like this was an unexpected result. This is more evidence that AI will have a profound impact in medicine, and we may experience this sooner than expected."

The researchers also demonstrated that the software learns to recognize many of the same structures and patterns in the tissues that pathologists use when performing their examinations. "Validation remains a barrier to using these algorithms in patient care. Being able to explain why an algorithm works is an important step towards clinical implementation."

The researchers are looking forward to future studies to evaluate whether the software can be used to improve outcomes for newly diagnosed patients.

###

Media Contact

Holly Korschun
[email protected]
404-727-3990
@emoryhealthsci

http://whsc.emory.edu/home/news/index.html

Share12Tweet7Share2ShareShareShare1

Related Posts

New Global Burden of Disease Study Reveals Falling Mortality Rates Amid Rising Youth Deaths and Growing Health Inequities

October 12, 2025

Reevaluating Fetal Gene Hypothesis in Heart Dynamics

October 12, 2025

Proactive Versus Reactive Approaches to Managing Hypotension in Surgery: A Comparative Analysis

October 12, 2025

Daily Fluctuations in Human Plasma Proteins Revealed

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1222 shares
    Share 488 Tweet 305
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Global Burden of Disease Study Reveals Falling Mortality Rates Amid Rising Youth Deaths and Growing Health Inequities

Reevaluating Fetal Gene Hypothesis in Heart Dynamics

Revolutionary Method Uncovers Cluster Structures in Data

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.