• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Machine learning generates realistic genomes for imaginary humans

Bioengineer by Bioengineer
February 5, 2021
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Burak Yelmen

Machines, thanks to novel algorithms and advances in computer technology, can now learn complex models and even generate high-quality synthetic data such as photo-realistic images or even resumes of imaginary humans. A study recently published in the international journal PLOS Genetics uses machine learning to mine existing biobanks and generate chunks of human genomes which do not belong to real humans but have the characteristics of real genomes.

“Existing genomic databases are an invaluable resource for biomedical research, but they are either not publicly accessible or shielded behind long and exhausting application procedures due to valid ethical concerns. This creates a major scientific barrier for researchers. Machine-generated genomes, or artificial genomes as we call them, can help us overcome the issue within a safe ethical framework,” said Burak Yelmen, first author of the study and Junior Research Fellow of Modern Population Genetics at the University of Tartu.

The pluridisciplinary team performed multiple analyses to assess the quality of the generated genomes compared to real ones. “Surprisingly, these genomes emerging from random noise mimic the complexities that we can observe within real human populations and, for most properties, they are not distinguishable from other genomes from the biobank we used to train our algorithm, except for one detail: they do not belong to any gene donor,” said Dr Luca Pagani, one of the senior authors of the study and a Mobilitas Pluss fellow.

The study additionally involves the assessment of the proximity of artificial genomes to real genomes to test whether the privacy of the original samples is preserved. “Although detecting privacy leaks among thousands of genomes could appear as looking for a needle in a haystack, combining multiple statistical measures allowed us to check all models carefully. Excitingly, the detailed exploration of complex leakage patterns can lead to improvements in generative model evaluation and design, and will fuel back the machine learning field,” said Dr Flora Jay, the coordinator of the study and CNRS researcher in the Interdisciplinary computer science laboratory (LRI/LISN, Université Paris-Saclay, French National Centre for Scientific Research).

All in all, machine learning approaches had provided faces, biographies and multiple other features to a handful of imaginary humans: now we know more about their biology. These imaginary humans with realistic genomes could serve as proxies for all the real genomes which are not publicly available or require long application procedures or collaborations, hence removing an important accessibility barrier in genomic research, in particular for underrepresented populations.

###

Media Contact
Burak Yelmen
[email protected]

Related Journal Article

http://dx.doi.org/10.1371/journal.pgen.1009303

Tags: BioinformaticsBiologyGenetics
Share12Tweet8Share2ShareShareShare2

Related Posts

Genomic Insights into Schizopygopsis malacanthus Adaptation

Genomic Insights into Schizopygopsis malacanthus Adaptation

October 1, 2025
Abiotic Stressors Drive Saprolegniasis in Farmed Fish

Abiotic Stressors Drive Saprolegniasis in Farmed Fish

September 30, 2025

Stowers Institute Welcomes Renowned Developmental and Evolutionary Biologist from HHMI Janelia Research Campus

September 30, 2025

How Antarctic Icefish Reengineered Their Skulls to Dominate an Evolutionary Arms Race

September 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    88 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    61 shares
    Share 24 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Amino Acid Gene Variants Linked to Thyroid Cancer Risk

Combating Ovarian Cancer Resistance: Astragalus and Cisplatin Unite

Noninvasive Urine Biomarkers Detect Bladder Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 59 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.