• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, January 23, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

LSTM and partners develop molecule that may lead to first synthetic one-dose antimalarial

Bioengineer by Bioengineer
May 24, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at LSTM, working in partnership with the University of Liverpool and other colleagues, have developed a molecule which has the potential to become the first fully synthetic, one-dose treatment for malaria.

In a paper published today in the journal Nature Communications, the multinational team describe the molecule, known as E209, as meeting the key requirements of the Medicines for Malaria Venture drug candidate profiles. The molecule is effective against parasites expressing the key genetic marker for artemisinin resistance in in vitro studies

The control and elimination of malaria requires effective treatment strategies. For several years, this has been in the form of artemisinin-based combination strategies (ACTs), which has seen artemisinin based drugs combined with a drug partner with a longer half-life.

The semi-synthetic ACTs have had a significant impact on malaria treatment however, the search for a fully synthetic alternative has been on for over a decade. The growing problem of resistance to current ACTs can lead to complete treatment failure. This has led the group to look at alternatives to retain the effectiveness against parasites with the known genetic markers of resistance while at the same time being fast acting.

LSTM's Deputy Director, Professor Steve Ward, is a senior author on the paper. He said: "Extensive molecular investigations have demonstrated that mutations in the K13 gene are makers for artemisinin susceptibility and are linked to drug resistance in some malaria parasites. These mutations allow the parasite to survive exposure to the drug during the early stages of infection in the red blood cell. E209 is a breakthrough molecule, it is fully synthetic, retains the killing efficiency of the artemisinins, works against K13 mutant parasites and is slowly eliminated raising the hope that it could be used as a single dose cure."

The other lead author Professor Paul O'Neill of the University of Liverpool, said: "E209 is a second-generation peroxide based drug, designed at Liverpool, with significant improvements over the gold standard antimalarial treatment artesunate. E209 contains a unique core with two endoperoxide units; through medicinal chemistry optimization, the stability, potency and pharmacokinetics of this class has now been optimized. The development of E209 has been made possible by our close partnership with the Medicines for Malaria Venture (Geneva) with MMV's Expert Scientific Advisory Committee, providing invaluable input to the project. "

The extensive data set obtained for E209 was obtained through a global collaborative network of scientists around the world allowing this drug discovery project to be rapidly advanced.

###

Media Contact

Clare Bebb
[email protected]
44-015-170-53135
@LSTMnews

http://www.liv.ac.uk/lstm

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring the SLC2 Gene Family in Fall Armyworm

Exploring the SLC2 Gene Family in Fall Armyworm

January 23, 2026
Spent Mushroom Substrate: A Sustainable Ruminant Feed Option?

Spent Mushroom Substrate: A Sustainable Ruminant Feed Option?

January 23, 2026

Can Dogs Identify Human Knowledge in Strangers?

January 23, 2026

Volatile Organic Compounds in Rice Wine: Origins & Analysis

January 23, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    156 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    80 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    62 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Language Preferences Among Autistic Adults

Advancing Humidity and Gas Sensing with Sn-Cu-Zn Nanostructures

Effective School Programs for Reducing Substance Use

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.