• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Low-threshold topological nanolasers based on the second-order corner state

Bioengineer by Bioengineer
July 6, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Weixuan Zhang, Xin Xie, Huiming Hao, Jianchen Dang, Shan Xiao, Shushu Shi, Haiqiao Ni, Zhichuan Niu, Can Wang, Kuijuan Jin, Xiangdong Zhang and Xiulai Xu

The applications of topological photonics have been intensively investigated, including one-way waveguide and topological lasers. Especially, the topological lasers have attracted broad attention in recent years, which have been proposed and demonstrated in various systems, including 1D edge state in 2D systems, 0D boundary state in 1D lattice and topological bulk state around band edge. Most of them are at microscale. The topological nanolaser with small footprint, low threshold and high energy-efficiency has yet to be explored. Recently, a new type of higher-order topological insulators which have lower dimensional boundary state has been proposed and demonstrated in many systems, including 2D photonic crystal. In the second-order 2D topological photonic crystal slab, there exist the gapped 1D edge states and mid-gap 0D corner state. This localized corner state provides a new platform to realize topological nanolaser.

In a new paper published in Light Science & Application, a team of scientists, led by Professor Xiulai Xu from Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, China, and collaborators have demonstrated a low-threshold topological nanolaser in 2D topological photonic crystal nanocavity. Based on the second-order corner state, a topological nanocavity is designed and fabricated. The quality factor (Q) is further optimized with a theoretical maximum of 50,000. The corner state is demonstrated to be robust against defects in bulk photonic crystal. A lasing behaviour with low threshold and high spontaneous emission coupling factor (β) is observed. The performance is comparable with that of conventional semiconductor lasers, indicating the great prospect in a wide range of applications for topological nanophotonic circuitry.

The topological nanocavity consists of two kinds of photonic crystal structure with the common bandstructure and different topologies which are characterized by 2D Zak phase. According to the bulk-edge-corner correspondence, the mid-gap 0D corner state can be induced by the quantized edge dipole polarization, which is highly localized at the intersection of two boundaries. The Q is optimized with smoother spatial distribution of corner state by adjusting the gap distance (g) between the trivial and nontrival photonic crystal slabs.

The designed topological nanocavities with different parameters are fabricated into GaAs slabs with a high density of InGaAs quantum dots. The trend of Q with g agrees well with the theoretical prediction, while the values are approximately an order of magnitude lower than the theoretical prediction due to the fabrication imperfection. Although the Q and resonance wavelength of the corner state are susceptible to disorder around the corner, the corner state is topologically protected by the nontrivial 2D Zak phases of the bulk band and robust against to the defects in bulk photonic crystal, which has been demonstrated experimentally.

A lasing behavior with high performance is observed at 4.2 K with quantum dots as the gain medium. The lasing threshold is about 1 μW and β is about 0.25. The performance is much better than that of topological edge lasers, especially the threshold which is about three orders of magnitude lower than most of the topological edge lasers. The high performance results from the strong optical confinement in the cavity due to the small mode volume and high Q.

This result downscales the applications of topological photonics into nanoscale, which will be of great significance to the development of topological nanophotonic circuitry. Furthermore, the topological nanocavity can greatly enhance light-matter interaction, therefore enabling the investigation of cavity quantum electrodynamics and the further potential applications in topological nanophotonic devices.

###

Media Contact
Xiulai Xu
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-00352-1

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

First-ever observation of the transverse Thomson effect unveiled

August 23, 2025
blank

Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

August 23, 2025

New Molecular-Merged Hypergraph Neural Network Enhances Explainable Predictions of Solvation Gibbs Free Energy

August 22, 2025

Shaping the Future of Dysphagia Diets Through 3D Printing Innovations

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Capturing a Split-Second Glimpse of Cellular Activity in Freeze-Frame

Children’s SARS-CoV-2 Antibodies Show Stronger FcR Binding

Link Between Type 2 Diabetes and Heart Failure

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.