• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators

Bioengineer by Bioengineer
August 18, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Wenjuan Zhu, Wenbo Ma, Yirong Su, Zeng Chen, Xinya Chen, Yaoguang Ma, Lizhong Bai, Wenge Xiao, Tianyu Liu, Haiming Zhu, Xiaofeng Liu, Huafeng Liu, Xu Liu, and Yang (Michael) Yang

X-ray imaging has been actively utilized in the fields of industrial material inspection, medical diagnosis and scientific research. The key component to detect X-ray is the scintillator which can convert X-ray photons to visible photons and then be detected by a photodiode array. Despite of decades of intensive research of scintillators, the performances of conventional scintillators are still far from ideal. While the emerging lead halide perovskite starts to show very promising characters, there are still several unpleasant factors such as strong self-absorption, relatively low light yield and lead toxicity that limit their practical application.

In a new paper published in Light Science & Application, a team of researchers, led by Professor Yang Yang from State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, China, and co-workers have developed a nontoxic Cs2Ag0.6Na0.4In0.85Bi0.15Cl6 double perovskite scintillator, which exhibits not only a high light yield but also long-term stability under continuous thermal treatment and X-ray irradiation. Given the high light output and fast light decay of this scintillator, static X-ray imaging was attained under an extremely low dose of ~1 μGyair, and dynamic X-ray imaging of finger bending without a ghosting effect was demonstrated under a low dose rate of 47.2 μGyair s-1. These results reveal the huge potential in exploring scintillators beyond lead halide perovskites, not only for avoiding toxic elements but also for achieving higher performance.

Scintillators are capable of converting X-ray photons into visible photons. The plausible mechanism of X-ray scintillation can be described as follows: The radiation energy is first absorbed by the heavy atoms of the scintillators mainly through the photoelectric effect and inelastic Compton scattering, ejecting massive hot electrons; then, these electrons thermalize on an ultrafast timescale and are captured by luminescent centres. These scientists summarize the design principles of scintillator:

“We design the scintillator according to the following three principles:(1) Introduce heavy atom (Bi3+) to improve X-ray absorption efficiency; (2) Weaken self-absorption and improve photoluminescence quantum yield to optimize light out; (3) Reduce afterglow and shorten light decay time to increase the signal-to-noise ratio (SNR) of X-ray imaging.”

“The realization of high-resolution X-ray image under an extreme low X-ray dose demonstrate that the X-ray dose requirement for medical X-ray imaging can be significantly reduced in the future.” They added.

“The presented scintillators can be used in X-ray computed tomography (CT) and dynamic X-ray imaging, which is important to understand many biological processes and is also useful for online monitoring of industrial process.” The scientists forecast.

###

Media Contact
Yang Yang (Michael)
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-00353-0

Tags: Chemistry/Physics/Materials SciencesOptics
Share13Tweet8Share2ShareShareShare2

Related Posts

Revolutionizing Communication: The Quantum Radio Antenna Unveiled

Revolutionizing Communication: The Quantum Radio Antenna Unveiled

October 16, 2025
blank

Golden breakthrough: revolutionizing green chemistry with precious metals

October 16, 2025

Chromsolutions Ltd Enhances Untargeted Compound Analysis for Customers Using Wiley’s KnowItAll Software

October 15, 2025

Water-Detected NMR Reveals RNA Condensate Dynamics

October 15, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1250 shares
    Share 499 Tweet 312
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Opuntia Seed Oil Shows Promising Anticoccidial Effects

Asymmetric Double-Layer Diode Chain Powers Terahertz Innovation

Integrating Bowel Ultrasound into NICU Care for NEC

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.