• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Low-cost, portable system takes OCT beyond ophthalmology

Bioengineer by Bioengineer
November 12, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers adapt OCT system to make it useful for minimally invasive joint surgery

IMAGE

Credit: Evan T. Jelly, Duke University


WASHINGTON — Researchers have developed a way to perform optical coherence tomography (OCT) in hard-to-reach areas of the body such as joints. The advance could help bring this high-resolution biomedical imaging technique to new surgical and medical applications.

OCT can image structures measured in microns, making it ideal for seeing subtle changes in tissue that might indicate disease or damage. Although OCT is now the standard of care in ophthalmology, making a high-quality OCT instrument compact enough for use inside the body has been challenging.

In The Optical Society (OSA) journal Optics Letters, researchers from Duke University report how they used a rigid borescope — essentially a thin tube of lenses — to deliver the infrared light necessary to perform OCT. Measuring just 4 millimeters in diameter, the borescope makes the beam delivery portion of the device very slim without sacrificing imaging performance.

“We saw a need for OCT image guidance in arthroscopic surgery, a minimally invasive procedure that uses an endoscope to address joint damage,” said research team leader Evan T. Jelly. “We took the low-cost OCT imaging platform we previously developed and adapted it to meet the requirements of this application.”

OCT through an endoscope

Working with Adam Wax, Jelly and their research team previously developed OCT systems that are a fraction of the cost of traditional models. To make an OCT system that could be used to assess the health of cartilage in a joint, they created an endoscopic delivery system that uses a prototype rigid borescope to relay the image from the tissue to a fiber optic connection. The instrument’s narrow front viewing section allows it to reach structures and cavities that aren’t accessible with the larger portion of the device that scans the patient.

The researchers designed the endoscopic OCT instrument to provide real-time quantitative information on cartilage thickness without requiring the doctor to cut or damage the tissue. This type of analysis is important for painful joint conditions such as osteoarthritis, which develop when cartilage wears down and becomes thinner.

The researchers tested their OCT instrument by using it to measure the thickness of cartilage in pig knees. Because pig cartilage is similar to that of humans, this provided a preliminary idea of how the device would perform in humans. The system was able to accurately identify the bone-cartilage interface for samples that were less than 1.1 millimeters thick.

With further development, the device could one day allow clinicians to offer less invasive treatment of joint problems. However, first the researchers must show that it can image thicker samples since human cartilage is slightly thicker than pig cartilage. They also want to further improve the ergonomics for use during surgery.

“By developing a new portable, low-cost version of OCT, we show that the success of this imaging approach will no longer be limited to ophthalmology applications,” said Jelly. “With some engineering expertise, this OCT platform can be adapted to fit a wide range of clinical needs.”

###

Paper: E. T. Jelly, Z. A. Steelman, A. Wax, “Optical coherence tomography through a rigid
borescope applied to quantification of articular cartilage thickness in a porcine knee model,” Opt. Lett., 44, 22, 5590-5593 (2019).

DOI: https://doi.org/10.1364/OL.44.005590.

About Optics Letters

Optics Letters offers rapid dissemination of new results in all areas of optical science with short, original, peer-reviewed communications. Optics Letters accepts papers that are noteworthy to a substantial part of the optics community. Published by The Optical Society and led by Editor-in-Chief Xi-Cheng Zhang, University of Rochester, USA, Optics Letters is available online at OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contact: [email protected]

Media Contact
James Merrick
[email protected]
202-416-1994

Original Source

https://www.osa.org/en-us/about_osa/newsroom/news_releases/2019/low-cost_portable_system_takes_oct_beyond_ophthalm/

Related Journal Article

http://dx.doi.org/10.1364/OL.44.005590

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

Poly-L-Histidine-Coated Nanoparticles for Targeted Doxorubicin Delivery

Revolutionary Ion Exchange Membranes for Arsenic Removal

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.