• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Loss of work productivity in a warming world

Bioengineer by Bioengineer
October 26, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: YU Shuang

In recent years, surveys based on social-science studies have been well applied to quantify the impact of heat stress on the work capacity. However, previous surveys were mainly for developed countries. The number of samples was usually very small (hundreds or even tens) and not suitable for identifying the regional differences across the world. The worldwide pattern of heat-related work productivity loss (WPL) remained unclear.

Recently, YU Shuang, XIA Jiangjiang and YAN Zhongwei from the Institute of Atmospheric Physics, Chinese Academy of Sciences, together with colleagues from China and UK, synthesized 4363 responses to a global online survey in 2016, the most extensive global survey about the effect of heat stress on the WPL currently available, in order to quantify the effects of heat stress on work productivity in different countries for the year.

The survey results show that the heat-related WPL for the year was 6.6 days for developing countries and 3.5 days for developed countries. The heat-related WPL has significant negative correlation with GDP Per Capita (cc=-0.63), indicating that the WPL is inversely proportional to the level of development. They identified the regions of vulnerability to heat waves that might have been overlooked in the past, especially the regions such as Central Asia and northern Europe due to relatively low adaptability to heat.

They further estimated the WPL for the future in the Representative Concentration Pathways (RCPs) scenarios( greenhouse gas concentration trajectory adopted by the IPCC and aims to represent the different atmospheric concentration change and climate futures). When global warming reaches 1.5, 2, 3 and 4°C respectively, the average WPL will be 9 (19), 12 (31), 22 (61) and 33 (94) days for developed (developing) countries. Countries in Southeast Asia in a 1.5°C-warming world would suffer the same loss as the developed countries would in a 4°C-warming world. This quantitatively addressed the severe situation that developing countries would face under global warming.

"Heat waves surely impact more seriously the developing countries in general, but our study quantitatively estimated how much heatwaves would reduce the productivity and identified the most vulnerable regions over the world." YU Shuang said, "Our results call for attention to the need of adaptation to increasing heatwaves by improving protective infrastructure especially for the developing regions in the Belt and Road."

The paper was published in Journal of Cleaner Production.

###

Media Contact

Zheng Lin
[email protected]
86-108-299-5053
@aasjournal

http://english.iap.cas.cn/

Original Source

http://english.iap.cas.cn/RE/201810/t20181026_200507.html http://dx.doi.org/10.1016/j.jclepro.2018.10.067

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Risk Assessment of PAHs in Korean Sesame Oil

November 3, 2025
Sex Differences Unveiled in Hamster Hypertension Study

Sex Differences Unveiled in Hamster Hypertension Study

November 3, 2025

AI Misuse in Stem Cell Research: A Comparative Study

November 3, 2025

Modular High-Throughput Tools Boost Chlamydomonas Chloroplast Research

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Matter at the Nanoscale: The Future of Field-Based Printing

Transforming Healthcare: Trauma-Informed Change in South Texas

Innovative Lightweight Multi-Wavelength Network Enables Efficient, High-Fidelity Full-Color 3D Holographic Displays

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.