• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Loss induced nonreciprocity

Bioengineer by Bioengineer
March 11, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Xinyao Huang, Cuicui Lu, Chao Liang, Honggeng Tao, and Yong-Chun Liu

Optical nonreciprocity, which prohibits the light field returning along the original path after passing through the optical system in one direction, is not only of vast interest to fundamental science, which brings us a deeper understanding of Lorentz reciprocity, time-reversal symmetry, and topological effects, but is also of great importance for realizing nonreciprocal optical and electromagnetics devices such as isolators, circulator and directional amplifiers, which are indispensable for applications ranging from optical communication to optical information processing.

However, realizing nonreciprocity is rather difficult as it requires breaking of the Lorentz reciprocity theorem. In other words, the protocols to nonreciprocity generation are limited as a result of the time-reversal symmetry and linear property of Maxwell’s equations. Most of the existing approaches to realize nonreciprocity can be grouped into three categories with the following requirements: (i) magnetic field induced breaking of time-reversal asymmetry, (ii) spatiotemporal modulation of system permittivity; (iii) nonlinearity. Nevertheless, these principles either meets difficulties for integration, or requires stringent experimental conditions, or has limited performances.

In a new paper published in Light Science & Application, a team of scientists, led by Professor Yong-Chun Liu from State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, China, and co-workers have proposed a new principle to realize nonreciprocity by going beyond the existing three categories of approaches. The idea is using energy loss to induce nonreciprocity. The loss in a resonance mode induces a phase lag, which is independent of the energy transmission direction. By combining multichannel lossy resonance modes, the interference gives rise to nonreciprocity, with different coupling strength for forward and backward directions [Fig. 1].

For the completely nonreciprocal points, i.e., the coupling only exists in one direction, the eigenvalues of the system are degenerate, accompanied by the coalescence of the eigenmodes, which present the features of the exceptional points.

The unidirectional nonreciprocal coupling directly gives rise to the unidirectional energy transmission between the main resonance modes. [Fig. 2].

In the scheme, magnetic field, nonlinearity and spatiotemporal modulation of permittivity are all not required. On the contrary, simply energy loss is used, which exists ubiquitously in a variety of physical systems, and is regarded as harmful and undesirable in most studies. The scheme is advantageous since it works for pure lossy and linear systems, in which neither gain nor nonlinearity is required.

The scheme is generic and can be applied to a variety of systems, such as optical cavities and waveguides, mechanical resonators, atomic ensembles, as well as superconducting circuits. This research paves the way for the design of nonreciprocal devices and the study of topological properties in lossy systems, without stringent requirements.

###

Media Contact
Yong-Chun Liu
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-021-00464-2

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

October 1, 2025

Innovative Biochar Technology Offers Breakthrough in Soil Remediation and Crop Protection

October 1, 2025

CATNIP Tool Expands Access to Sustainable Chemistry Through Data-Driven Innovation

October 1, 2025

Mastering the “Troublesome” Oxygen

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    63 shares
    Share 25 Tweet 16
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    63 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hot Air Drying Effectively Retains Nutritional Quality of Radish Microgreens

Exposure to Outdoor Air Chemicals May Increase Parkinson’s Disease Risk, Study Finds

Effective Strategies for Preventing Chainsaw-Related Injuries

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.