• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

‘Longevity Protein’ rejuvenates muscle healing in old mice

Bioengineer by Bioengineer
November 21, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Sahu et al. (2018), Nature Communications

PITTSBURGH, Nov. 21, 2018 – One of the downsides to getting older is that skeletal muscle loses its ability to heal after injury. New research from the University of Pittsburgh implicates the so-called "longevity protein" Klotho, both as culprit and therapeutic target.

The paper, published this week in Nature Communications, showed that, in young animals, Klotho expression soars after a muscle injury, whereas in old animals, it remains flat. By raising Klotho levels in old animals, or by mitigating downstream effects of Klotho deficiency, the researchers could restore muscle regeneration after injury.

"We found that we were able to rescue, at least in part, the regenerative defect of aged skeletal muscle," said lead author Fabrisia Ambrosio, Ph.D., director of rehabilitation for UPMC International, associate professor of physical medicine and rehabilitation at Pitt, and core faculty at the McGowan Institute of Regenerative Medicine. "We saw functional levels of muscle regeneration in old animals that paralleled those of their young counterparts, suggesting that this could potentially be a therapeutic option down the road."

Suspecting that Klotho acts through mitochondria dysfunction, the researchers gave Klotho-deficient animals a mitochondria-targeting drug called SS-31, which currently is in phase III clinical trials. Treated animals grew more new muscle tissue at the site of injury compared to untreated controls, and their strength after recovery rivaled that of genetically normal mice.

Similarly, injecting Klotho into older animals a few days after injury resulted in greater muscle mass and better functional recovery than their saline-treated counterparts. Normal, healthy mice did not benefit from SS-31 after injury.

Clinically, these findings could translate to older adults who either sustained a muscle injury or underwent muscle-damaging surgery. Giving them Klotho at the appropriate timepoint could boost their muscle regeneration and lead to a more complete recovery.

Ambrosio cautions that the timing, dosage and route of administration will require future research.

"If you just bombard the muscle with Klotho, we do not expect to observe any functional benefit," Ambrosio said. "We've found that mimicking the timing profile we see in young animals seems to be critical. We think that this gives some insight into the therapeutic window."

###

Additional authors from Pitt include Amrita Sahu, M.S., Hikaru Mamiya, B.S., Sunita Shinde, M.S., Amin Cheikhi, Ph.D., Lia Winter, B.S., Nam Vo, Ph.D., Donna Stolz, Ph.D., Vera Roginskaya, B.S., Claudette St. Croix, Ph.D., Ben Van Houten, Ph.D., and Aaron Barchowsky, Ph.D. Collaborators outside Pitt include Winnie Tang, Ph.D., of Johns Hopkins Bloomberg School of Public Health; Laurie Sanders, Ph.D., of Duke University School of Medicine; Michael Franti, Ph.D., of Boehringer-Ingelheim, and Thomas Rando, M.D., Ph.D., of Stanford University School of Medicine.

This research was funded by National Institutes of Health grant R01-AG052978 from the National Institute on Aging and grant R01-ES023696 from the National Institute of Environmental Health Science. Boehringer-Ingelheim did not influence the interpretation of the results.

About the University of Pittsburgh Schools of the Health Sciences

The University of Pittsburgh Schools of the Health Sciences include the schools of Medicine, Nursing, Dental Medicine, Pharmacy, Health and Rehabilitation Sciences and the Graduate School of Public Health. The schools serve as the academic partner to the UPMC (University of Pittsburgh Medical Center). Together, their combined mission is to train tomorrow's health care specialists and biomedical scientists, engage in groundbreaking research that will advance understanding of the causes and treatments of disease and participate in the delivery of outstanding patient care. Since 1998, Pitt and its affiliated university faculty have ranked among the top 10 educational institutions in grant support from the National Institutes of Health. For additional information about the Schools of the Health Sciences, please visit http://www.health.pitt.edu.

http://www.upmc.com/media

Contact: Erin Hare
Office: 412-864-7194
Mobile: 412-738-1097
E-mail: [email protected]

Contact: Courtney Caprara
Office: 412-647-6190
Mobile: 412-592-8134
E-mail: [email protected]

Media Contact

Erin Hare
[email protected]
412-864-7194
@UPMCnews

http://www.upmc.com/Pages/default.aspx

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-07253-3

Share12Tweet7Share2ShareShareShare1

Related Posts

New 70K SNP Array Developed for Atlantic Halibut

New 70K SNP Array Developed for Atlantic Halibut

October 16, 2025
A Cosmic Journey: Exploring the Universe of Space Immunology

A Cosmic Journey: Exploring the Universe of Space Immunology

October 16, 2025

Sex-Based Variations in Neonatal Brain Development

October 16, 2025

Lariciresinol, Secoisolariciresinol Boost Muscle and Mitochondria

October 16, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1252 shares
    Share 500 Tweet 313
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

IL-6 Enhances PD-L1 in Breast Cancer via STAT3

New Model Predicts Thyroid Nodule Malignancy Efficiently

Redefining ‘Fake Targets’ in Antigen-Independent Immunotherapy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.