• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Long-range four-stranded DNA structures found to play a role in rare ageing disease

Bioengineer by Bioengineer
December 6, 2021
in Biology
Reading Time: 3 mins read
0
Illustration of G-Quadruplexes
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A special form of four-stranded DNA, recently seen in human cells, has been found to interact with a gene that causes Cockayne Syndrome when faulty.

Illustration of G-Quadruplexes

Credit: Federica Raguseo

A special form of four-stranded DNA, recently seen in human cells, has been found to interact with a gene that causes Cockayne Syndrome when faulty.

As well as the classic double-helix, researchers have recently discovered a whole host of other DNA strand configurations, including quadruple-helix DNA, which forms knot-like structures called G-quadruplexes.

While many of these new DNA configurations have only been observed in cells in dishes, G-quadruplexes have recently been observed in living human cells. However, their possible functions in cells have not been discovered.

Now, researchers from the Molecular Science Research Hub at Imperial College London have observed a protein called Cockayne Syndrome B (CSB) preferentially interacting with one specific type of G-quadruplex. These special G-quadruplexes arise when distant parts of DNA interact, something that researchers thought was impossible to form within cells.

Normally functioning CSB proteins do not cause any ill effects, but mutations of the gene that produce CSB protein can cause the fatal premature ageing disorder Cockayne Syndrome, which kills many sufferers before adulthood.

The team found that CSB proteins with mutations that cause Cockayne Syndrome are no longer able to interact with the long-range G-quadruplexes. While we don’t yet know why this might be, the team’s results, published today in the Journal of the American Chemical Society, suggest that these long-range DNA G-quadruplexes are specifically linked with the functional role of CSB.

Lead researcher Dr Marco Di Antonio, from the Department of Chemistry at Imperial, said: “Our genomic DNA is more than two metres long, but is compressed into a space only a few microns in diameter. It shouldn’t therefore be a surprise that there are ways the long-range looped structures are leveraged to compress DNA in more complex interactions than we imagined.

“There is still so much we don’t know about DNA, but our results show that how and where G-quadruplex structures form affects their function, making them more important biologically than previously thought.”

DNA strands are incredibly long and are wound in tight structures to fit inside our cells. Previously, researchers had assumed that G-quadruplexes form only from regions of DNA that sit next to each other. However, the team discovered G-quadruplexes that are formed from parts of the DNA strand that are spatially distant one from the other.

It’s these G-quadruplexes that specifically interact with the CSB protein. The team shows that CSB could potentially use the G-quadruplexes to link together distant portions of the DNA.

Exactly what the interaction results in is yet to be determined, but previous independent research  found that cells without CSB have difficulty processing the DNA around sequences with the potential to form G-quadruplexes.

The Imperial team have now found that the mutated form of CSB that causes Cockayne Syndrome is specifically attracted to G-quadruplexes that link distant DNA portions. This could mean further study of the mutated CSB gene might reveal the specific biological function of these long-range DNA structures.

Next, the researchers want to image the G-quadruplexes and the functional CSB gene bound together to determine exactly what the relationship does: whether the CSB helps the G-quadruplex hold the two distant regions of the DNA together, or whether CSB actually initiates the break-up of G-quadruplexes once they have completed their function, or a combination of both.

First author of the study Denise Liano, from the Department of Chemistry at Imperial, said: “There is currently no cure for Cockayne Syndrome. But with further study into how G-quadruplexes and the gene behind Cockayne Syndrome interact we can learn details that will hopefully allow us to discover therapeutic tools, such as designer molecules that can regulate the interaction and fight back against the premature ageing caused by the disease.”



Journal

Journal of the American Chemical Society

DOI

10.1021/jacs.1c10745

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Cockayne Syndrome B Protein Selectively Resolves and Interact with Intermolecular DNA G-Quadruplex Structures

Article Publication Date

2-Dec-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

Early Tuberculosis Treatment Lowers Sepsis Mortality in People with HIV

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.