• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Local holographic transformations: tractability and hardness

Bioengineer by Bioengineer
April 27, 2023
in Chemistry
Reading Time: 3 mins read
0
Local holographic transformations: tractability and hardness
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Counting problems arise in many different fields, e.g., statistical physics, economics and machine learning. In order to study the complexity of counting problems, several natural frameworks have been proposed. Two well studied frameworks are counting constraint satisfaction problems (#CSP) and Holant problems. For counting satisfaction problems over the Boolean domain, two explicit tractable families namely  and , are identified; any function set which is not contained in these two families is proved to be #P-hard. Furthermore, counting CSPd is the counting constraint satisfaction problem restricted to the instances where every variable occurs a multiple of d times. The team not only generalized local affine functions to #CSPd for general d, but also gives new tractable classes by combining local holographic transformations with global holographic transformation. Moreover, the team showed how to use local holographic transformations to prove hardness. This is of independent interests in the complexity classification of counting problems.

Local holographic transformations: tractability and hardness

Credit: Higher Education Press Limited Company

Counting problems arise in many different fields, e.g., statistical physics, economics and machine learning. In order to study the complexity of counting problems, several natural frameworks have been proposed. Two well studied frameworks are counting constraint satisfaction problems (#CSP) and Holant problems. For counting satisfaction problems over the Boolean domain, two explicit tractable families namely  and , are identified; any function set which is not contained in these two families is proved to be #P-hard. Furthermore, counting CSPd is the counting constraint satisfaction problem restricted to the instances where every variable occurs a multiple of d times. The team not only generalized local affine functions to #CSPd for general d, but also gives new tractable classes by combining local holographic transformations with global holographic transformation. Moreover, the team showed how to use local holographic transformations to prove hardness. This is of independent interests in the complexity classification of counting problems.

Recently, significant progresses have been made in the complexity classification of counting problems for three frameworks, graph homomorphisms, the counting constraint satisfaction problems and Holant problems. Holographic transformations played a key role in this project. In order to apply a holographic transformation on a particular situation, a research team led by Zhiguo FU published their new research on 27 March 2023 in Frontiers of Computer Science co-published by Higher Education Press and Springer Nature.

In the past twenty years, a series of remarkable complexity dichotomy theorems were built for counting problems. The key techniques to prove hardness were gadget constructions, interpolation and holographic transformations.

The team gives an example which is #P-hard by introducing local holographic transformations as a new tool to prove hardness. Specially, local affine functions partially reflect the difficulty in proving a Holant problem: Nice structures hide in strange supports and we have no powerful tools. Overall, there is still a long way to go to achieve a complete complexity classification for Holant problems with complex-valued and asymmetric signatures.

###

Research Article, Published: 27 March 2023

Peng YANG, Zhiguo FU. Local holographic transformations: tractability and hardness. Front. Comput. Sci., 2023, 17(2): 172401, https://doi.org/10.1007/s11704-022-1231-5

 

About Frontiers of Computer Science (FCS)

FCS was launched in 2007. It is published bimonthly both online and in print by HEP and Springer. Prof. Zhi-Hua Zhou from Nanjing University serves as the Editor-in-Chief. It aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. FCS covers all major branches of computer science, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The readers may be interested in the special columns “Perspective” and “Excellent Young Scholars Forum”.

FCS is indexed by SCI(E), EI, DBLP, Scopus, etc. The latest IF is 2.669. FCS solicits the following article types: Review, Research Article, Letter.



Journal

Frontiers of Computer Science

DOI

10.1007/s11704-022-1231-5

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Local holographic transformations: tractability and hardness

Article Publication Date

27-Mar-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Running Quantum Dynamics on Your Laptop? Breakthrough Technique Brings Us Closer

Running Quantum Dynamics on Your Laptop? Breakthrough Technique Brings Us Closer

October 8, 2025
Creating Advanced Polymers for Next-Generation Bioelectronics

Creating Advanced Polymers for Next-Generation Bioelectronics

October 8, 2025

ACS President Reacts to 2025 Nobel Prize in Chemistry Announcement

October 8, 2025

Innovative 3D Printing Technique ‘Grows’ Ultra-Strong Materials

October 8, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1116 shares
    Share 446 Tweet 279
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    79 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sex and Smoking Shape Bladder Mutation Patterns

Revolutionizing Object Detection: Global Influence and Trends

Research Lab Unveils Breakthrough in mRNA Cancer Vaccine Technology

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.