• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Living retina achieves sensitivity and efficiency engineers can only dream about

Bioengineer by Bioengineer
September 28, 2021
in Biology
Reading Time: 5 mins read
0
Retinal cross-section
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

DURHAM, N.C. – If you wanted to design the most perfect, low-energy, light-detecting device for a future camera or a prosthetic retina, you’d reach for something called ‘efficient coding theory,’ to set out the array of sensors.

Retinal cross-section

Credit: Andy J. Fischer, The Ohio State University, 2008

DURHAM, N.C. – If you wanted to design the most perfect, low-energy, light-detecting device for a future camera or a prosthetic retina, you’d reach for something called ‘efficient coding theory,’ to set out the array of sensors.

Or you could just look at a mammalian retina.

In a pair of papers on retinal structure, Duke University neurobiologists have shown that the rigors of natural selection and evolution have shaped the retinas in our eyes just as this theory of optimization would predict. And that puts retinas miles ahead of anything human engineering can achieve at this point.

In a previous paper published last March in Nature, the researchers showed that rat and monkey retinas are laid out in patterns of sensitivity that mimic what efficient coding theory would predict. Different sets of retinal neurons are sensitive to individual stimuli: bright, dark, moving, and so on, and they’re arranged in a three-dimensional mosaic of cells that works to add up the image. 

Now, in a paper appearing this week in the Proceedings of the National Academy of Sciences, “we set out to understand that, through a lot of simulation and a little bit of pencil and paper math,” said John Pearson, an assistant professor of biostatistics & bioinformatics in the School of Medicine. “The mosaics don’t just randomly overlap, but they don’t overlap in a highly ordered way.”

“We’re making a prediction about how literally thousands of cells of multiple different types arrange themselves across space,” said Greg Field, an assistant professor of neurobiology in the Duke School of Medicine. “The monkey retina and our retinas are nearly indistinguishable,” he said. “The fact that we observed this in the monkey retina gives us incredible confidence that our retinas are laid out in the same way.”

In a cross-section of the retina, the bodies of the ganglion cells, round orbs that contain the nucleus, line up in a layer together, but they extend their tree-like, branching dendrites into a thick layer that looks like the tangled roots of a pot-bound houseplant. It’s in this thicker, spectacularly complex layer that mosaics of different sensitivities are laid out in ordered patterns.

The ganglion cells below the dendrite layer just output ones and zeros, essentially. The sensitivity comes from the mosaic itself. And that mosaic is not only laid out optimally, it adapts to current conditions.

“The retina is not one mosaic. It’s a whole bunch of stacked mosaics. And each of these mosaics encodes something different about the visual field,” Field said. The mammalian retina parses some 40 different visual features.

“The depth that the dendrites reach in the retina is kind of like an addressing scheme, where if you’re deeper, you get one kind of information,” Field said.  “If it’s more shallow, it gets a different kind of information. In fact, the deeper ones get the ‘off’ signals, and the more shallow ones get the ‘on’ signals. So you can have many detectors sampling the same place in the visual world, because they’re using depth to convey different kinds of signals,” Field said.

One reason the array is so efficient is that the cells conserve energy by not responding to some stimuli. In a very dark room, the environment is ‘noisy’ for the receptors, so they tune out most of the static and only respond to something that’s quite bright.

“The more noise there is in the world, the pickier the cell can be about what it will respond to,” Pearson said. “And when they get pickier, it turns out that there’s less redundancy in them. And so you can deploy them in ways that don’t have to overlap anymore.”

If there were never any noise in the visual environment, the mosaics of detectors would be aligned on top of each other, explained graduate student Na Young Jun, who is the first author one of the papers and a co-author on the other. But she computationally modeled 168 different noise conditions and found that the higher the noise, the greater the offset between detectors. 

In a living mammalian retina, the team found the mosaics are offset just as the theory would predict, meaning the retina is optimized to deal with higher noise conditions.

If you’re a small, delicious woodland creature like a mouse, “your survival doesn’t hinge so much on the things that are easy to see,” Field said. “It hinges on the things that are hard to see. And so the retina is really geared toward being optimized to detect those things that are hard to see.”

“This is an important design feature to incorporate in any kind of retinal prosthetic that you’d want to build,” Field said. But getting this idea into a smart phone may take a while. For one thing, the retina is alive and self-assembled, and it adapts and changes with time.

The energy consumption of the human retina is also orders of magnitude less than even the best smartphone sensor at the moment, Jun said. For example, the 5-megapixel, 1/5th of an inch OmniVision OV5675 smartphone image sensor consumes 1.92×10-10 Watts. The human retina is conservatively estimated to consume about six percent of that (1.27×10-11 Watts in bright light). In dim conditions, the eye’s energy consumption goes up to about 5.08×10-11, but it also captures single photons that no smartphone camera ever could.

The next feature of the system the team would like to tackle is the element of time – differences in the response times of retinal cells that add up to form a sense of motion, or an interpretation of moving images. Some of it, Jun said, will be dependent on the speed at which individual detectors fire.

This research was funded by the National Eye Institute of the U.S. National Institutes of Health (R01 EY031396), a Ruth K. Broad postdoctoral fellowship and the Whitehead Scholars Program.

CITATIONS: “Inter-mosaic Coordination of Retinal Receptive Fields,” Suva Roy, Na Young Jun, Emily Davis, John Pearson, Greg Field. Nature, March 10, 2021. DOI: 10.1038/s41586-021-03317-5

“Scene Statistics and Noise Determine the Relative Arrangement of Receptive Field Mosaics,” Na Young Jun, Greg Field, John Pearson. Proceedings of the National Academy of Sciences, Sept. 28, 2021. DOI: 10.1073/pnas.2105115118



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2105115118

Method of Research

Data/statistical analysis

Subject of Research

Animals

Article Title

Scene Statistics and Noise Determine the Relative Arrangement of Receptive Field Mosaics

Article Publication Date

28-Sep-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Extraction Methods Impact Idesia Polycarpa Oil Quality

September 13, 2025

Evaluating Rohu Fry Transport: Key Water Quality Insights

September 13, 2025

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Curcuma longa Nanocomposites Combat Drug-Resistant Pathogens

Preoperative BMI Influences Outcomes in Infective Endocarditis

Advancing Liver Transplantation for Cancer with Genomics

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.