• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Liverpool scientists to develop liquid antennas

Bioengineer by Bioengineer
January 17, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

University of Liverpool researchers have been awarded £578k funding from the Engineering and Physical Sciences Research Council (EPSRC) to develop liquid antennas which have the potential to transform modern radio communications and radar.

Antennas convert radio waves into electrical signals and are an essential component in mobile and wireless products from smart phones to radar.

Traditionally antennas are made out of materials such as copper which have good conductive properties. However, they are also large, heavy and expensive and can be hard to reconfigure with limited bandwidth.

As the `Internet of Things' and 5G become more of a reality, there is a need to develop a new type of antenna which is small, transparent and has better reconfigurability than conventional metal antennas.

It is known that water can be used as an antenna and has potential to overcome many of the problems facing traditional metal antenna. However, water becomes ice once the temperature goes below 0 degree C.

This research project will bring together radio engineering experts from the Department of Electrical Engineering & Electronics (Professor Huang's team) with Material Scientists in the Department of Chemistry (Professor Xiao's team), to identify the most suitable liquid materials which can be used as antenna.

The liquids will be tested for low loss, thermal and mechanical stability, whether they can work in temperatures ranging from -30 to +60 degree C, if they transmit the correct frequency range (from kHz to GHz) and have Radio Frequency and microwave power range up to 100 kW.

The project will also investigate how to design and make compact and efficient liquid antennas which are flexible or reconfigurable in terms of the main antenna parameters (such as the operational frequency, radiation pattern, and size) and suitable for a wide range of real world applications.

Professor Yi Huang, an international expert in radio engineering who is leading the research, said: "This original and transformative approach is able to meet the demands of the next generation of mobile devices, and the opportunities afforded by the `Internet of Things'.

"This research project aims to go one step towards developing a novel type of antenna by bringing together new knowledge in material science with radio engineering expertise in order to provide an alternative compact reconfigurable and/or flexible device to the wireless world and meet the demands from the telecommunications industry."

###

Media Contact

Sarah Stamper
[email protected]
01-517-943-044
@livuninews

http://www.liv.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Novice Nurses’ Role in Workplace Adaptation: Study Insights

October 19, 2025

Revealing Aging Changes in Renal Tubulointerstitium

October 19, 2025

Reversing Cellular Aging: PURPL RNA’s Epigenetic Breakthrough

October 19, 2025

Restoring Kraak Porcelain Patterns with Generative AI

October 19, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1262 shares
    Share 504 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    290 shares
    Share 116 Tweet 73
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    124 shares
    Share 50 Tweet 31
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novice Nurses’ Role in Workplace Adaptation: Study Insights

Revealing Aging Changes in Renal Tubulointerstitium

Reversing Cellular Aging: PURPL RNA’s Epigenetic Breakthrough

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.