• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Lipid raft components offer potential cholesterol-lowering drug target

Bioengineer by Bioengineer
December 20, 2018
in Biology
Reading Time: 1 min read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Approximately 1 in every 4 deaths in the United States is caused by heart disease, according to the Centers for Disease Control and Prevention. Hypercholesterolemia, or high cholesterol, is a major risk factor for cardiovascular disease. However, cholesterol is also an essential component of cell membranes. Mammals can either synthesize cholesterol or absorb it from food using the intestinal transmembrane protein Niemann-Pick C1-like 1, or NPC1L1. This transporter resides in lipid rafts, membrane microdomains used for cell-cell interaction and cell signaling that are enriched in cholesterol as well as gangliosides — a group of galactose-containing glycolipids.

In a paper in the Journal of Lipid Research, Jin-ichi Inokuchi from Tohoku University in Japan and colleagues show that NPC1L1-dependent intestinal cholesterol uptake requires a particular ganglioside called GM3 and the enzyme that synthesizes it, GM3S. Cholesterol uptake is decreased in GM3S-deficient cells, and GM3S-deficient mice fed a high-cholesterol diet show a lower susceptibility to high blood cholesterol. This research proposes a new viable target for cholesterol reducing therapies.

###

DOI: 10.1194/jlr.M089201

Media Contact
Laurel Oldach
[email protected]
http://dx.doi.org/10.1194/jlr.M089201

Tags: BiochemistryBiologyCholesterolGastroenterologyMetabolism/Metabolic DiseasesNutrition/Nutrients
Share12Tweet8Share2ShareShareShare2

Related Posts

Hsa_circ_0077007: New Hope for Colorectal Cancer

September 9, 2025
Meet the Finalists: 2025 Blavatnik National Awards for Young Scientists Revealed

Meet the Finalists: 2025 Blavatnik National Awards for Young Scientists Revealed

September 9, 2025

Future Ocean Warming Threatens Prochlorococcus Biomass

September 9, 2025

Impact of Stimulants on Wheat Germination and Growth

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hsa_circ_0077007: New Hope for Colorectal Cancer

Extracting Easy-to-Digest Protein from Trout Residues

Fast Hyperspectral Imaging Quantifies Ship NO2, SO2 Emissions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.