• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Lipid molecules can be used for cancer growth

Bioengineer by Bioengineer
May 31, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cancer cells can when the blood supply is low use lipid molecules as fuel instead of blood glucose. This has been shown in animal tumour models by researchers at Karolinska Institutet in Sweden in a study published in Cell Metabolism. The mechanism may help explain why tumours often develop resistance to cancer drugs that inhibit the formation of blood vessels.

Tumour growth and spread rely on angiogenesis, a process of growing new blood vessels that supply the cancer cells with nutrients and hormones, including glucose (sugar). Treatment with antiangiogenic drugs reduces the number of blood vessels in the tumour as well as the blood glucose supply. Many such drugs have been developed and are now used in human patients for treating various cancer types. However, the clinical benefits of antiangiogenic drugs in cancer patients are generally low and the cancers treated often develop a resistance to drugs, especially cancer types that grow close to fat tissues such as breast cancer, pancreatic cancer, liver cancer and prostate cancers.

In collaboration with Japanese and Chinese scientists, a research group at Karolinska Institutet in Sweden has discovered a new mechanism by which cancers can evade antiangiogenic treatment and become resistant.

The reduction of tumour blood vessels results in low oxygenation in tumour tissues – a process called hypoxia. In the current study, the researchers show that hypoxia acts as a trigger to tell fat cells surrounding or within tumour tissues to break down the stored excessive lipid energy molecules. These lipid energy molecules can when the blood supply is low be used for cancer tissue expansion.

"Based on this mechanism, we propose that a combination therapy consisting of antiangiogenic drugs and drugs blocking lipid energy pathways would be more effective for treating cancers. In animal tumour models, we have validated this very important concept, showing that combination therapy is superior to monotherapy," says Yihai Cao, Professor at the Department of Microbiology, Tumor and Cell Biology at Karolinska Institutet, who led the study.

Professor Cao's group now plans to work with drug companies and clinical oncologists to explore whether such a new combination therapy would improve the quality of life and lifespan in human cancer patients.

###

The study was financed by the Swedish Research Council, the Swedish Cancer Foundation, Karolinska Institutet, the Torsten Söderberg Foundation, the Tore Nilson Foundation, the Ruth and Richard Julin Foundation, the Ögonfonden Foundation, the Wera Ekström Foundation, the Lars Hierta Memorial Foundation, National Natural Science Foundation of China, the International Research Fund for Subsidy of Kyushu University School of Medicine Alumni, the Martin Rind Foundation, the Maud and Birger Foundation, the Alex and Eva Wallström Foundation, the Robert Lundberg Memorial Foundation, the Swedish Diabetes Foundation, the Swedish Childhood Cancer Fund, the European Research Council, the Knut and Alice Wallenberg Foundation, and the Novo Nordisk Foundation.

Publication: "Cancer lipid metabolism confers antiangiogenic drug resistance". Hideki Iwamoto, Mitsuhiko Abe, Yunlong Yang, Dongmei Cui, Takahiro Seki, Masaki Nakamura, Kayoko Hosaka, Sharon Lim, Jieyu Wu, Xingkang He, Xiaoting Sun, Yongtian Lu, Qingjun Zhou, Weiyun Shi, Takuji Torimura, Guohui Nie, Qi Li, and Yihai Cao. Cell Metabolism, online 31 May 2018.

Media Contact

Press Office, Karolinska Institutet
[email protected]
@karolinskainst

http://ki.se/english

Share13Tweet7Share2ShareShareShare1

Related Posts

Interpretable Deep Learning for Anticancer Peptide Prediction

September 13, 2025

Navigating Shadows: Treating Anorexia and C-PTSD

September 13, 2025

Preoperative BMI Influences Outcomes in Infective Endocarditis

September 13, 2025

Adverse Events in Asian Adults on Brivaracetam

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Xanthan Gum Production with Essential Oil By-products

Groundwater Pesticide Contamination: Challenges and Solutions

FBXW11 Ubiquitinates YB1, Suppressing Hepatocarcinoma Growth

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.