• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Link between disrupted enzyme and intellectual disability revealed

Bioengineer by Bioengineer
September 1, 2022
in Health
Reading Time: 5 mins read
0
Graph showing irregular activity caused by the P212L mutation of CaMKIIalpha.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new study reveals how a rare genetic mutation leads to intellectual disability. The P212L mutation in an enzyme called CaMKIIalpha, which is important for learning and memory, is known to be linked to intellectual disability. However, the exact process by which the mutation affected the enzyme’s activity was unclear, until now. A newly developed method of protein analysis has shown that the P212L mutation causes dramatically more activation of CaMKIIalpha. This has enabled researchers to identify a potential treatment using existing medicine, and this new method could be adapted to analyze other genetic causes of disability and disease in the future.

Graph showing irregular activity caused by the P212L mutation of CaMKIIalpha.

Credit: 2022 Fujii H et al.

A new study reveals how a rare genetic mutation leads to intellectual disability. The P212L mutation in an enzyme called CaMKIIalpha, which is important for learning and memory, is known to be linked to intellectual disability. However, the exact process by which the mutation affected the enzyme’s activity was unclear, until now. A newly developed method of protein analysis has shown that the P212L mutation causes dramatically more activation of CaMKIIalpha. This has enabled researchers to identify a potential treatment using existing medicine, and this new method could be adapted to analyze other genetic causes of disability and disease in the future.

About 1% of the global population lives with an intellectual disability. There are several commonly known causes including infection, injury or genetic conditions. CaMKIIalpha is an enzyme that mediates biochemical reactions in the brain and is important for our ability to learn. Typical learning requires that CaMKIIalpha activity is regulated at appropriate levels and at the appropriate timing, and irregularities with it have previously been linked to a variety of neurological disorders. One known cause of intellectual disability is a P212L mutation in CaMKIIalpha. Although the association between intellectual disability and the mutation is known, exactly how the enzyme’s mutation alters its function was not previously understood.

The mutation of P212L is very rare, but a patient was identified in Japan who then took part in a study with researchers from the University of Tokyo and Nagoya University. “This is only the fourth known case of this P212L mutation in the world. However, the relationship between this single gene mutation and symptoms is relatively clear, making it important in the study of intellectual disability,” said Hajime Fujii, lecturer from the Graduate School of Medicine at the University of Tokyo.

Since reactions at this scale are not directly visible to our eyes, they must be monitored through other techniques. However, these experiments are usually laborious and time consuming. “It is difficult to process many samples in parallel and not possible to measure enzyme activity in physiological conditions, such as living cells or synapses. We wanted something more simple, scalable, sensitive and quantitative. So, we developed a method to measure enzyme activity by fluorescent probe,” explained Fujii. “This can tell us the progress of a biochemical reaction by its brightness or color. In order to create a fluorescent probe, we had to couple the biochemical reaction, such as molecular binding or changes in protein shape (that occur at the scale of a nanometer), with fluorescence brightness or color. So, we used a physical phenomenon called FRET (Förster resonance energy transfer), with which the probe can change relative brightness between two colors according to changes of the CaMKIIalpha that occur when it is activated. We call our approach a FRET-based kinase phenotyping strategy.”

This new method enabled the team to rapidly and accurately analyze nearly a hundred cell extracts and study their biological activity. What it found was that CaMKIIalpha with the P212L mutation exhibited enhanced activation compared to usual. This means that rewiring or changes in the brain that usually occur during learning may possibly be irregular in people with this mutation, compared to people without it. The researchers also found that in neurons, taken from rats in this study, the CaMKIIalpha response to stimulation was increased. The activation response of the enzyme rose faster and fell slower, again demonstrating an unusually enhanced response.

The team hopes that its research will help to identify treatment options for genetically based intellectual disabilities. In this case, it found that memantine, a drug currently used to treat symptoms of Alzheimer’s disease, caused a suppression of the P212L mutation’s effect in neurons. “The next step would be to determine in more detail how irregular CaMKIIalpha activation causes intellectual disability and examine whether suppressing irregular activation with memantine can treat intellectual disability,” said Fujii.

“So far, there has been no effective medical treatment for children with genetically based intellectual disability. This study can offer the possibility of treatment to patients with intellectual disability who have this rare variant of CaMKII” said Assistant Professor Hiroyuki Kidokoro from Nagoya University, a paper co-author and pediatrician who worked with the patient.

Looking to the future, Fujii said, “Mutations in CaMKIIalpha have been related to other neurodevelopmental disorders, so we may be able to clarify the development of and treatment strategies for these mutations in the same way, by applying this FRET-based kinase phenotyping platform. To apply our strategy to mutations of other genes that cause various diseases, we will need fluorescent probes to measure the functions of the genes. Currently, fluorescent probes are available for some genes, but not others, so it will be necessary to develop new fluorescent probes, which may take some time.”

###

Journal article: 

Hajime Fujii, Hiroyuki Kidokoro, Yayoi Kondo, Masahiro Kawaguchi, Shin-ichiro Horigane, Jun Natsume, Sayaka Takemoto-Kimura, Haruhiko Bito. “Förster resonance energy transfer-based kinase mutation phenotyping reveals an aberrant facilitation of Ca2+/calmodulin-dependent CaMKIIa activity in de novo mutations related to intellectual disability,” Frontiers in Molecular Neuroscience. DOI: 10.3389/fnmol.2022.970031

 

Funding: 

This work was supported in part by grants from Grant-in-Aid for Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) (JP19dm0207079), Brain Information Dynamics (BID) (JP17H06312), JSPSKAKENHI (JP17K13270, JP22H00432, JP22H05160, and JP21H05091), Takeda Science Foundation, Nakatani Foundation, Astellas Foundation for Research on Metabolic Disorders, Hitachi Global Foundation, and the Toray Science Foundation.

 

Useful Links:

Graduate School of Medicine: https://www.m.u-tokyo.ac.jp/english/

Department of Neurochemistry: http://www.neurochem.m.u-tokyo.ac.jp/Homepage.html

 

Research Contact:

Lecturer Hajime Fujii

Department of Neurochemistry,

Graduate School of Medicine, The University of Tokyo, 

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

[email protected]

 

Press contact:
Mrs. Nicola Burghall
Public Relations Group, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
[email protected]

 

About the University of Tokyo
The University of Tokyo is Japan’s leading university and one of the world’s top research universities. The vast research output of some 6,000 researchers is published in the world’s top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 4,000 international students. Find out more at www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

 



Journal

Frontiers in Molecular Neuroscience

DOI

10.3389/fnmol.2022.970031

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Förster resonance energy transfer-based kinase mutation phenotyping reveals an aberrant facilitation of Ca2+/calmodulin-dependent CaMKIIa activity in de novo mutations related to intellectual disability

Article Publication Date

1-Sep-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Sure! Here’s a rewritten version of the headline for a science magazine post: “Indra’s Internet: Revolutionizing Connectivity with Cutting-Edge Technology” If you’d like it to be more technical or catchy, let me know!

September 17, 2025

Patients in the World’s Poorest Countries Face Triple the Mortality Risk After Abdominal Trauma Surgery

September 17, 2025

Soap Shortage Identified as Top Obstacle to Effective Hand Hygiene in Shared Community Spaces

September 17, 2025

Innovative AI Algorithm Leverages Mammograms to Precisely Predict Cardiovascular Risk in Women

September 17, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breakthrough Room-Temperature Terahertz Device Paves the Way for 6G Networks

Lymph Nodes Identified as Crucial Drivers of Successful Cancer Immunotherapy

Sure! Here’s a rewritten version of the headline for a science magazine post: “Indra’s Internet: Revolutionizing Connectivity with Cutting-Edge Technology” If you’d like it to be more technical or catchy, let me know!

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.