• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Link between chronic kidney disease and cardiovascular disease explained

Bioengineer by Bioengineer
March 20, 2023
in Health
Reading Time: 3 mins read
0
Schematic summary of inter-organ communications between kidneys and remote vascular smooth muscle cells, via “malicious” sEVs originating from chronic kidney disease, leading to vascular calcification
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Tokyo Medical and Dental University (TMDU) have uncovered a link between cardiovascular disease and chronic kidney disease, revealing novel disease biomarkers and therapeutic targets

Schematic summary of inter-organ communications between kidneys and remote vascular smooth muscle cells, via “malicious” sEVs originating from chronic kidney disease, leading to vascular calcification

Credit: Department of Nephrology, TMDU

Researchers from Tokyo Medical and Dental University (TMDU) have uncovered a link between cardiovascular disease and chronic kidney disease, revealing novel disease biomarkers and therapeutic targets

Tokyo, Japan – Chronic kidney disease is linked to the formation of mineral deposits on blood vessel walls, known as “calcification”, causing cardiovascular disease. Small extracellular vesicles (sEVs)—small, enclosed structures outside cells—can transmit signaling molecules between cells, but their biological roles are not fully understood. Now, “malicious” sEVs originating from chronic kidney disease have been shown to play a role in blood vessel calcification through a signaling pathway called “VEGFA”.

Muscle cells (vascular smooth muscle cells) in the blood vessel walls can undergo a process called “phenotypic switching”, which alters them from a contractile state that maintains normal structure and function into a non-contractile state. This is often the first step toward cardiovascular disease and calcification of the blood vessel walls. Chronic kidney disease can promote this phenotypic switching, and now researchers from TMDU have shown that the two are linked through alterations to sEVs derived from chronic kidney disease.

sEVs are naturally secreted by all cells. They carry and spread a variety of signaling molecules between cells, including proteins, microRNA (miRNA), and DNA. The team sequenced the population of miRNAs in circulating sEVs and found that four miRNAs were decreased in sEVs from both a rodent model and from humans with chronic kidney disease. These miRNAs are protective against vascular calcification. “Computational analysis showed that this quartet of miRNAs targets VEGFA–VEGFR2 signaling, which is a key signaling pathway that drives vascular calcification,” explains joint first author Takaaki Koide. “The reduction in the miRNA levels was linked to an increased amount of VEGFA protein”.

“We then showed that therapeutic inhibition of the VEGFA pathway, both pharmacologically and genetically, reduced the vascular calcification in our rodent model of chronic kidney disease,” explains Shintaro Mandai, joint first author. Treatment of chronic kidney disease patients with these VEGFA inhibitors may potentially lessen the associated vascular calcification. Targeting the sEVs themselves may also have therapeutic potential.

“The quartet of miRNAs also showed diagnostic efficiency, as the expression level of each miRNA is useful for predicting calcification of the abdominal aorta,” explains senior author Shinichi Uchida. “These miRNAs are therefore strong candidates as both biomarkers of disease and therapeutic targets.”

This study reveals for the first time that vascular calcification is controlled by VEGFA signaling that is activated by sEVs derived from chronic kidney disease. It could prove key to the treatment of these diseases, which are highly significant worldwide.

###

The article, “Circulating Extracellular Vesicle-Propagated microRNA Signature as a Vascular Calcification Factor in Chronic Kidney Disease”, was published in Circulation Research at DOI: 10.1161/CIRCRESAHA.122.321939.
 



Journal

Circulation Research

DOI

10.1161/CIRCRESAHA.122.321939

Article Title

Circulating Extracellular Vesicle-Propagated microRNA Signature as a Vascular Calcification Factor in Chronic Kidney Disease

Share12Tweet7Share2ShareShareShare1

Related Posts

VISTA Regulation in Tumor Cells Affects NSCLC Immunity

October 2, 2025

Barriers Facing Roma Women in Primary Healthcare

October 2, 2025

$3.7 Million NIH Grant Supports IU Research on ADHD Medication’s Impact on Substance Use in Youth

October 2, 2025

Ambient AI Scribes: A Breakthrough in Reducing Administrative Load and Combating Professional Burnout

October 2, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    78 shares
    Share 31 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

VISTA Regulation in Tumor Cells Affects NSCLC Immunity

Enhancing CAR T Cell Therapy for Solid Tumors

Tracking Raccoon Domestication Through Citizen Science Images

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.