• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Like a flexible Lego railway track: How stable microtubules form within cells

Bioengineer by Bioengineer
March 9, 2023
in Chemistry
Reading Time: 3 mins read
0
Microtubule structure and D2 binding
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Like poles support a tent, microtubules—hollow cylindrical structures made of tubulin protein—support eukaryotic cells. But microtubules provide more than just mechanical strength; they help prepare the cell for cell division and migration and work as a railway track on which motor proteins transport materials within the cell. The formation of microtubules within cells resembles how a child assembles a Lego train track. The tubulins—Lego bricks—constantly assemble and disassemble to make the microtubule—train track—longer and shorter in processes called polymerization and depolymerization. The processes are regulated by microtubule-associated proteins such as CAMSAP3 that can stabilize the microtubules. A new study by Hanjin Liu and Tomohiro Shima of the University of Tokyo clarifies how CAMSAP3 stabilizes microtubules. The findings further our understanding of various cellular processes involving microtubules. 

Microtubule structure and D2 binding

Credit: Liu and Shima et al 2023

Like poles support a tent, microtubules—hollow cylindrical structures made of tubulin protein—support eukaryotic cells. But microtubules provide more than just mechanical strength; they help prepare the cell for cell division and migration and work as a railway track on which motor proteins transport materials within the cell. The formation of microtubules within cells resembles how a child assembles a Lego train track. The tubulins—Lego bricks—constantly assemble and disassemble to make the microtubule—train track—longer and shorter in processes called polymerization and depolymerization. The processes are regulated by microtubule-associated proteins such as CAMSAP3 that can stabilize the microtubules. A new study by Hanjin Liu and Tomohiro Shima of the University of Tokyo clarifies how CAMSAP3 stabilizes microtubules. The findings further our understanding of various cellular processes involving microtubules. 

“Maintaining the proper length and distribution of microtubules in the cell is critical for survival. So, microtubule-binding proteins control the microtubule dynamics,” says Shima. “CAMSAP3 is a recently found microtubule-binding protein. It specifically binds to one of the two tips of each microtubule and stabilizes the tip to prevent it from depolymerizing.” 

How exactly does it stabilize the microtubule tips? To answer that, the researchers considered the structures of CAMSAPs and the microtubules. Unlike rigid Lego bricks, the tubulins in a microtubule show flexibility in their alignment. Some stabilized microtubules are known to have an expanded structure in which the distance between tubulins is greater than that of normal microtubules. And within CAMSAP3, a region called D2 contributes to microtubule stabilization. The researchers conducted an array of experiments to show that the D2 region preferentially attaches to expanded microtubules. Adding an excessive amount of D2 expanded the microtubule structure and slowed microtubule depolymerization by 18-fold. Voila! A possible mechanism for how CAMSAP3 protein stabilizes microtubules: the D2-induced expansion of the microtubule structure inhibits depolymerization.

“CAMSAP3 plays a role in various cellular phenomena, such as cell-cell binding and the development of neurons and cancer cells, through its microtubule-stabilizing ability,” says Shima. “Given the multifunctionality of microtubules, our findings provide a key concept to understanding how various cellular phenomena are controlled by tuning microtubule dynamics.” 

“Also, an abnormal CAMSAP3 can cause diseases like kidney disease and malignant cancer,” explains Shima. “Although this study only examined the activity of the protein at the molecular level, it may contribute to better understanding the diseases and their treatment methods in the future.” 

The researchers also hope to reveal how D2 discriminates between expanded and compact microtubules at the atomic level, which may allow them to engineer a protein with an even greater ability to discriminate between them. Such an engineered protein can be used as an anti-cancer drug to stabilize microtubules and stop cell division. 

 

###

Related links

The School of Science, UTokyo: https://www.s.u-tokyo.ac.jp/en/



Journal

Life Science Alliance

DOI

10.26508/lsa.202201714

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Preference of CAMSAP3 for expanded microtubule lattice contributes to stabilization of the minus end

Article Publication Date

9-Mar-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Ice Accelerates Iron Dissolution More Than Liquid Water, Study Finds

September 22, 2025
New Tool Enhances Generative AI Models to Accelerate Discovery of Breakthrough Materials

New Tool Enhances Generative AI Models to Accelerate Discovery of Breakthrough Materials

September 22, 2025

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

September 20, 2025

Gravitino Emerges as a Promising New Candidate for Dark Matter

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists’ Mental Models Reveal Microplastics Insights

Ice Accelerates Iron Dissolution More Than Liquid Water, Study Finds

Unlocking Brain Lipids: New Neurodegenerative Atlas

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.