• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, February 8, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Lighting up cells with genetically-encoded X-ray-sensitive probes

Bioengineer by Bioengineer
May 18, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

Microscopic visualization of sub-cellular structures and constituents plays a central role in cell biology. Synchrotron-based X-ray microscopy (XRM) provides a unique approach for direct imaging a whole cell with intrinsic nanoscale resolution. However, existing approaches to label biomolecules rely on the use of exogeneous tags that are multi-step and error-prone (e. g. antibody-based detection). Recently, Chunhai Fan from Shanghai Jiao Tong University, Ying Zhu, Jun Hu and Lihua Wang from the Shanghai Synchrotron Lightsource developed genetically-encoded tags for XRM imaging, which allows nanoscale localization of proteins in cells.

They repurposed peroxidases as genetically-encoded X-ray-sensitive tags for site-specific labeling of protein-of-interest in mammalian cells. They find that polymers that are in-situ catalytically formed by fusion-expressed peroxidases are visible under XRM (Fig. a). The major consequences of using this new tag can be categorized in three aspects: 1) The genetically encoded X-ray tags allow endogenous labeling of diverse molecules and subcellular structures for XRM imaging with an ultrahigh spatial resolution of ~30 nm (Fig. b). 2) The high photostability of X-ray tags enables long-term observation of intracellular and intercellular events. Especially, they visualize the changes of intercellular connections among tumor cells dependent on DNA methylation with XRM. 3) The high energy resolution of XRM provides a direct means to realize multi-colour imaging of cellular structures. This work enlightens the way to nanoscopic imaging for biological studies.

###

This work was supported by the 10ID-1 Soft X-ray Spectromicroscopy beamline of the Canadian Light Source (CLS), the 10A Soft X-ray Nanoscopy beamline of the Pohang Light Source (PLS) II and the BL08U1-A Soft X-ray Spectromicroscopy beamline of the Shanghai Synchrotron Radiation Facility (SSRF).

Genetically encoded X-ray cellular imaging for nanoscale protein
localization

Huating Kong, Jichao Zhang, Jiang Li, Jian Wang, Hyun-Joon Shin,

Renzhong Tai, Qinglong Yan, Kai Xia, Jun Hu, Lihua Wang, Ying Zhu,
Chunhai Fan

https://doi.org/10.1093/nsr/nwaa055

Media Contact
Chunhai Fan
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwaa055

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13
  • Mapping Tertiary Lymphoid Structures for Kidney Cancer Biomarkers

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Group Therapy Boosts Recovery in Elderly Depression

Evaluating Biosimilar Trastuzumab for Breast Cancer in Thailand

Decoding Phantom Limb Movements via Intraneural Signals

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 74 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.