• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Light, fantastic: the path ahead for faster, smaller computer processors

Bioengineer by Bioengineer
May 15, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Australian and German researchers build modular bridge design for nanoscale photonic chip

IMAGE

Credit: Louise Cooper/University of Sydney

Light is emerging as the leading vehicle for information processing in computers and telecommunications as our need for energy efficiency and bandwidth increases.

Already the gold standard for intercontinental communication through fibre-optics, photons are replacing electrons as the main carriers of information throughout optical networks and into the very heart of computers themselves.

However, there remain substantial engineering barriers to complete this transformation. Industry-standard silicon circuits that support light are more than an order of magnitude larger than modern electronic transistors. One solution is to ‘compress’ light using metallic waveguides – however this would not only require a new manufacturing infrastructure, but also the way light interacts with metals on chips means that photonic information is easily lost.

Now scientists in Australia and Germany have developed a modular method to design nanoscale devices to help overcome these problems, combining the best of traditional chip design with photonic architecture in a hybrid structure. Their research is published today in Nature Communications.

“We have built a bridge between industry-standard silicon photonic systems and the metal-based waveguides that can be made 100 times smaller while retaining efficiency,” said lead author Dr Alessandro Tuniz from the University of Sydney Nano Institute and School of Physics.

This hybrid approach allows the manipulation of light at the nanoscale, measured in billionths of a metre. The scientists have shown that they can achieve data manipulation at 100 times smaller than the wavelength of light carrying the information.

“This sort of efficiency and miniaturisation will be essential in transforming computer processing to be based on light. It will also be very useful in the development of quantum-optical information systems, a promising platform for future quantum computers,” said Associate Professor Stefano Palomba, a co-author from the University of Sydney and Nanophotonics Leader at Sydney Nano.

“Eventually we expect photonic information will migrate to the CPU, the heart of any modern computer. Such a vision has already been mapped out by IBM.”

On-chip nanometre-scale devices that use metals (known as “plasmonic” devices) allow for functionality that no conventional photonic device allows. Most notably, they efficiently compress light down to a few billionths of a metre and thus achieve hugely enhanced, interference-free, light-to-matter interactions.

“As well as revolutionising general processing, this is very useful for specialised scientific processes such as nano-spectroscopy, atomic-scale sensing and nanoscale detectors,” said Dr Tuniz also from the Sydney Institute of Photonics and Optical Science.

However, their universal functionality was hampered by a reliance on ad hoc designs.

“We have shown that two separate designs can be joined together to enhance a run-of-the-mill chip that previously did nothing special,” Dr Tuniz said.

This modular approach allows for rapid rotation of light polarisation in the chip and, because of that rotation, quickly permits nano-focusing down to about 100 times less than the wavelength.

Professor Martijn de Sterke is Director of the Institute of Photonics and Optical Science at the University of Sydney. He said: “The future of information processing is likely to involve photons using metals that allow us to compress light to the nanoscale and integrate these designs into conventional silicon photonics.”

###

DOWNLOAD the research and a photo of the research team at this link.

INTERVIEWS

Dr Alessandro Tuniz I [email protected]
Institute of Photonics and Optical Science | School of Physics
The University of Sydney Nano Institute

Associate Professor Stefano Palomba | [email protected]
Institute of Photonics and Optical Science | School of Physics
The University of Sydney Nano Institute

Professor Martijn de Sterke | [email protected]
Director, Institute of Photonics and Optical Science | School of Physics
The University of Sydney Nano Institute

MEDIA ENQUIRIES

Marcus Strom | [email protected] | +61 423 982 485

DECLARATION

This research was supported by the University of Sydney Fellowship Scheme, the German Research Foundation (DFG) under Germany’s Excellence Strategy EXC-2123/1. This work was performed in part at the NSW node of the Australian National Fabrication Facility (ANFF).

Media Contact
Marcus Strom
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-16190-z

Tags: Chemistry/Physics/Materials SciencesComputer ScienceHardwareNanotechnology/MicromachinesOpticsTechnology/Engineering/Computer ScienceTheory/Design
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring the Limits of Nuclear Stability: Multi-Step Fragmentation of High-Energy Projectiles in Thick Targets

Exploring the Limits of Nuclear Stability: Multi-Step Fragmentation of High-Energy Projectiles in Thick Targets

August 7, 2025
blank

Cicadas Harmonize Their Songs with the First Light of Dawn

August 6, 2025

Sure! Here are a few rewritten versions of the headline “Friction which cools” for a science magazine post: 1. “How Friction Can Cool Instead of Heat: The Science Explained” 2. “The Surprising Cooling Effect of Friction” 3. “When Friction Cools: A New Twist in Energy Science” 4. “Cooling Through Friction: Challenging Conventional Wisdom” 5. “The Unexpected Chill of Friction: Breaking the Heat Stereotype” Let me know if you’d like it tailored to a specific audience or style!

August 6, 2025

Innovative Sound Shield Reduces Noise While Allowing Airflow

August 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    75 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Elranatamab Outperforms UK Real-World Myeloma Treatments

    40 shares
    Share 16 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Microbiome Enhances Flavor in Berbassa Fermented Milk

Sharp Force Limb Injuries: Swedish Autopsy Study Insights

T. Gondii Infection Risks in Ethiopian Sheep, Goats

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.