• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Light driven proton pump in distant relative

Bioengineer by Bioengineer
April 10, 2020
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Unique protein acts as an inward proton pump in a distant microbial relative

IMAGE

Credit: © 2020 IDKlab CC BY-SA 4.0

Researchers investigated the group of microorganisms classified as Asgard archaea, and found a protein in their membrane which acts as a miniature light-activated pump. The schizorhodopsin protein draws protons into the organisms’ body. This research could lead to new biomolecular tools to control the pH in cells or microorganisms, and possibly more.

Asgard archaea are relatively new to science, but they are ancient and important to us in more ways than one. They are single-celled organisms and were originally found at the bottom of the ocean. Asgard archaea are what are known as a prokaryote, they do not have a cell nucleus, yet despite this, they are genetically close to single-celled organisms called eukaryotes which do contain a cell nucleus. They are like a modern analogue of an ancient common ancestor.

The race is on to investigate these small but significant organisms. Associate Professor Keiichi Inoue from the Institute for Solid State Physics at the University of Tokyo, Professor Hideki Kandori from Nagoya Institute of Technology and their team chose to study a feature of Asgard archaea that although not unique to them, is especially interesting in their case, and that is light-sensitive or photoreceptive proteins called rhodopsins. The organisms live at the bottom of oceans and lakes so it’s surprising they need any kind of sensitivity to light.

“We explored the molecular function of special rhodopsins in Asgard archaea called schizorhodopsins and found that they acted as light-activated microscopic pumps,” explained Inoue. “Schizorhodopsin uses sunlight energy to take up a proton into the cell along a pathway inside the protein. Many prokaryotes such as bacteria and other archaea use rhodopsins to pump protons out, but we find this newly characterized form in Asgard archaea particularly interesting.”

As the scale this function occurs on is nanoscopic, sophisticated measurement techniques with high sensitivity and high temporal resolution were required. Inoue, Kandori and their team used a method called laser flash photolysis which uses pulsed laser light to stimulate reactions. Color change in the protein affected by laser light was monitored by sensitive sensors. These detected the presence and nature of the short-lived activation of schizorhodopsin.

“These findings will help us better understand proton and other ion transport mechanisms. In addition, schizorhodopsin could be made into a useful molecular tool for researchers,” commented Inoue. “For example in optogenetics, which is a new methodology to control various cellular phenomena with light. Schizorhodopsins could also be used to control the pH inside cells or microorganisms with light, as pH can be altered by changing the proton concentration.”

###

Journal article

Keiichi Inoue, Satoshi P. Tsunoda, Manish Singh, Sahoko Tomida, Shoko Hososhima, Masae Konno, Ryoko Nakamura, Hiroki Watanabe, Paul-Adrian Bulzu, Horia L. Banciu, Adrian-?tefan Andrei, Takayuki Uchihashi, Rohit Ghai, Oded Béjà, Hideki Kandori. Schizorhodopsins: A family of rhodopsins from Asgard archaea that function as light-driven inward H+ pumps. Science Advances. DOI: 10.1126/sciadv.aaz2441

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI grant numbers JP16H02277, JP17K14536, and JP19K15628.

Inoue Laboratory – https://inoue.issp.u-tokyo.ac.jp/en/index.html

Institute for Solid State Physics – http://www.issp.u-tokyo.ac.jp/index_en.html

Research Contacts

Associate Professor Keiichi Inoue

Institute for Solid State Physics, The University of Tokyo

5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 JAPAN

Tel: +81-4-7136-3230 – Email: [email protected]

Professor Hideki Kandori

OptoBiol Technology Research Center, Nagoya Institute of Technology

Gokisocho, Showa-ku, Nagoya, Aichi 466-8555 JAPAN

Tel: +81-52-735-5207 – Email: [email protected]

Press Contacts

Ms. Madoka Mochida

Institute for Solid State Physics, The University of Tokyo

5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 JAPAN

Email: [email protected]

Mr. Rohan Mehra

Division for Strategic Public Relations, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN

Tel: +81-3-5841-0876 – Email: [email protected]

About the University of Tokyo

The University of Tokyo is Japan’s leading university and one of the world’s top research universities. The vast research output of some 6,000 researchers is published in the world’s top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 4,000 international students. Find out more at http://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

Media Contact
Keiichi Inoue
[email protected]

Original Source

https://www.u-tokyo.ac.jp/focus/en/press/z0508_00102.html

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aaz2441

Tags: BacteriologyBiochemistryBiologyCell BiologyMicrobiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Metabolic Inflammation Model Explains Teen Reproductive Issues

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.