• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Lifespan extension at low temperatures is genetically controlled, study suggests

Bioengineer by Bioengineer
December 17, 2018
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Michael Shribak and Kristin Gribble


WOODS HOLE, Mass. –Why do we age? Despite more than a century of research (and a vast industry of youth-promising products), what causes our cells and organs to deteriorate with age is still unknown.

One known factor is temperature: Many animal species live longer at lower temperature than they do at higher temperatures. As a result, “there are people out there who believe, strongly, that if you take a cold shower every day it will extend your lifespan,” says Kristin Gribble, a scientist at the Marine Biological Laboratory (MBL).

But a new study from the laboratories of Gribble and MBL Director of Research David Mark Welch indicates that it’s not just a matter of turning down the thermostat. Rather, the extent to which temperature affects lifespan depends on an individual’s genes.

The MBL study, published in Experimental Gerentology, was conducted in the rotifer, a tiny animal that Gribble, Mark Welch, and colleagues have been developing as a modern model system for aging research. They exposed 11 genetically distinct strains of Brachionus rotifers to low temperature, with the hypothesis that if the mechanism of lifespan extension is purely a thermodynamic response, all strains should have a similar lifespan increase.

However, the median lifespan increase ranged from 6 percent to 100 percent across the strains, they found. They also observed differences in mortality rate.

The study clarifies the role of temperature in the free-radical theory of aging, which has dominated the field since the 1950s. This theory proposes that animals age due to the accumulation of cellular damage from reactive oxidative species (ROS), a form of oxygen that is generated by normal metabolic processes.

“Generally, it was thought that if an organism is exposed to lower temperature, it passively lowers their metabolic rate and that slows the release of ROS, which slows down cellular damage. That, in turn, delays aging and extends lifespan,” Gribble says.

Their results, however, indicate that the change in lifespan under low temperature is likely actively controlled by specific genes. “This means we really need to pay more attention to genetic variability in thinking about responses to aging therapies,” Gribble says. “That is going to be really important when we try to move some of these therapies into humans.”

###

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery – exploring fundamental biology, understanding marine biodiversity and the environment, and informing the human condition through research and education. Founded in Woods Hole, Massachusetts in 1888, the MBL is a private, nonprofit institution and an affiliate of the University of Chicago.

Media Contact
Gina Hebert
[email protected]
508-289-7423

Original Source

http://www.mbl.edu/blog/lifespan-extension-at-low-temperatures-is-genetically-controlled-study-suggests/

Related Journal Article

http://dx.doi.org/10.1016/j.exger.2018.10.023

Tags: AgingBiologyDevelopmental/Reproductive BiologyGeneticsGerontology
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Regional Research Impact Through Community Geography

October 16, 2025

Olanzapine’s Impact on Young Anorexia Nervosa Patients

October 16, 2025

Research Reveals Connection Between Thymic Health and Cancer Patients’ Immunotherapy Outcomes

October 16, 2025

Impact of Comic Adaptation on Nursing Education Success

October 16, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1252 shares
    Share 500 Tweet 313
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Regional Research Impact Through Community Geography

Pyrolysis Liquid from Tunisian Woods: Antifungal & Anti-Termite Insights

KAIST Creates AI Technology to Predict and Assemble Cellular Drug Responses Like LEGO Blocks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.