• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Life cycle assessment of carbon capture

Bioengineer by Bioengineer
November 9, 2021
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In our efforts to reduce greenhouse gas emissions, carbon capture is mentioned as a possible technology. CO2 can, for example, be captured from large industrial companies and from incineration plants.

However, like all other technologies, carbon capture leaves its own imprint on the outside world. DTU Environment has therefore conducted a life cycle analysis, which has systematically assessed the impact from a possible carbon capture plant installed at the Amager Bakke incineration plant in Copenhagen. Not just from the pilot plant currently installed by DTU, but from a plant that would cover the entire Amager Bakke facility. The assessment has made it possible to examine the advantages and disadvantages of the carbon capture plant from the point of view of the climate impact.

Amager Bakke incineration plant burns, among other things, household waste that has not been sorted for recycling. The energy generated is used to produce electricity and heat. During incineration, CO2 is released from the waste, which includes food waste and textiles.

Energy production changing
The focus of the life cycle assessment has been to investigate the impact of the carbon capture plant on the energy generated by the incineration plant as well as other environmental impacts. The analysis looked at a number of waste composition scenarios.

“Carbon capture reduces CO2 emissions from the incineration plant. However, electricity production is reduced by approx. 50 per cent. For some incineration plants, this would have a considerable impact on their overall CO2 accounts, but at Amager Bakke, the steam from the carbon capture in fact increases the heat output utilized in the district heating system by 20 per cent. The overall net energy efficiency is thus not affected, but there is a shift from less electricity to more heat,” explains Assistant Professor Valentina Bisinella, DTU Environment, who carried out the analysis.

Transport and storage may result in emissions
The other drawbacks for the climate highlighted by the analysis are primarily associated with the transport and storage of the captured CO2 in the subsoil. These activities may cause unintentional emissions of the greenhouse gas into the atmosphere, while sea transport also causes CO2 emissions.

“Even when factoring in the CO2 emissions that may occur both during transport and storage in the subsoil, carbon capture clearly results in net climate benefits,” says Valentina Bisinella.

In the past, Valentina Bisinella has conducted life cycle analyses of incineration plants across Europe, leading to the same overall conclusions. Those analyses also included the recycling of the captured CO2, which currently only takes place at three incineration plants in the world, two in the Netherlands and one in Japan. Use of the captured CO2 to produce, for example, chemicals and fuels such as methanol and DME would naturally increase the overall climate gain further, provided there is access to green electricity. Such use may also be an option for Amager Bakke in the future.

Amager Ressource Center

Credit: Hufton&Crow

In our efforts to reduce greenhouse gas emissions, carbon capture is mentioned as a possible technology. CO2 can, for example, be captured from large industrial companies and from incineration plants.

However, like all other technologies, carbon capture leaves its own imprint on the outside world. DTU Environment has therefore conducted a life cycle analysis, which has systematically assessed the impact from a possible carbon capture plant installed at the Amager Bakke incineration plant in Copenhagen. Not just from the pilot plant currently installed by DTU, but from a plant that would cover the entire Amager Bakke facility. The assessment has made it possible to examine the advantages and disadvantages of the carbon capture plant from the point of view of the climate impact.

Amager Bakke incineration plant burns, among other things, household waste that has not been sorted for recycling. The energy generated is used to produce electricity and heat. During incineration, CO2 is released from the waste, which includes food waste and textiles.

Energy production changing
The focus of the life cycle assessment has been to investigate the impact of the carbon capture plant on the energy generated by the incineration plant as well as other environmental impacts. The analysis looked at a number of waste composition scenarios.

“Carbon capture reduces CO2 emissions from the incineration plant. However, electricity production is reduced by approx. 50 per cent. For some incineration plants, this would have a considerable impact on their overall CO2 accounts, but at Amager Bakke, the steam from the carbon capture in fact increases the heat output utilized in the district heating system by 20 per cent. The overall net energy efficiency is thus not affected, but there is a shift from less electricity to more heat,” explains Assistant Professor Valentina Bisinella, DTU Environment, who carried out the analysis.

Transport and storage may result in emissions
The other drawbacks for the climate highlighted by the analysis are primarily associated with the transport and storage of the captured CO2 in the subsoil. These activities may cause unintentional emissions of the greenhouse gas into the atmosphere, while sea transport also causes CO2 emissions.

“Even when factoring in the CO2 emissions that may occur both during transport and storage in the subsoil, carbon capture clearly results in net climate benefits,” says Valentina Bisinella.

In the past, Valentina Bisinella has conducted life cycle analyses of incineration plants across Europe, leading to the same overall conclusions. Those analyses also included the recycling of the captured CO2, which currently only takes place at three incineration plants in the world, two in the Netherlands and one in Japan. Use of the captured CO2 to produce, for example, chemicals and fuels such as methanol and DME would naturally increase the overall climate gain further, provided there is access to green electricity. Such use may also be an option for Amager Bakke in the future.



Journal

Waste Management & Research The Journal for a Sustainable Circular Economy

DOI

10.1177/0734242X211048125

Article Title

Environmental assessment of amending the Amager Bakke incineration plant in Copenhagen with carbon capture and storage

Article Publication Date

29-Sep-2021

COI Statement

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Mitochondrial Genome Unveils Monodactylus sebae Insights

August 27, 2025
Identifying Genes Linked to Fat Traits in Xiang Pigs

Identifying Genes Linked to Fat Traits in Xiang Pigs

August 27, 2025

CircCOG5 Regulates Ferroptosis in Ovarian Cancer

August 27, 2025

Heat Stress Impact on Aged Hens’ Health and Performance

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Examining Occupational Gaps and Cognitive Decline in Seniors

OLED-Driven Metasurfaces Enable Holographic Projections

Understanding Female-to-Female Aggression in Workspaces

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.