• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Lehigh University mechanical engineer earns NSF CAREER Award for noise reduction research

Bioengineer by Bioengineer
April 2, 2019
in Biology
Reading Time: 5 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Justin W. Jaworski is designing a better model to build quieter aircraft wings

IMAGE

Credit: copyright 2019 John Kish IV

If it’s got an edge, chances are good it’s going to make noise. And for some people, that is an intriguing prospect.

That’s because if they could figure out precisely how the shape of an edge affects the sound it makes as it moves through the air, they could design that edge to be quieter. Quiet enough to alter the experience of living near airports. To reduce the disturbance caused by wind turbines. To increase the viability of new transportation and delivery technologies, like air taxis and drones.

Engineers have sought to make things like airplane wings and turbine blades quieter for years, but have not done so with the magnitude of noise reduction and level of predictability that could ignite a paradigm shift across industries.

“Right now, if you asked, ‘For an ordinary wing of this size in a flow of this speed, could you reliably redesign the wing geometry to be precisely five decibels quieter?’ no one could do that,” says Justin W. Jaworski, an assistant professor of mechanical engineering and mechanics at Lehigh University’s P.C. Rossin College of Engineering and Applied Science.

With help from the National Science Foundation (NSF), Jaworski is working on developing a predictive noise framework that will do just that. His proposal to develop new theoretical models for how edge serrations affect their local fluid flow and acoustic signature recently won him a Faculty Early Career Development (CAREER) Award.

The CAREER program offers the most prestigious award granted by NSF in support of early-career faculty. They are awarded annually in support of junior faculty members across the U.S. who exemplify the role of teacher-scholars through outstanding research, excellent education, and the integration of education and research. Jaworski’s award provides support at the level of approximately $510,000 over five years for his noise research.

One of the ways an airplane wing makes noise is due to air–referred to as a fluid–creating a turbulent layer of eddies near the wing surface. When these eddies pass over the rear (or trailing) edge, they scatter and produce a louder sound than in the absence of the edge. This scattering of turbulence is the ultimate source of the noise we hear.

Using sawtooth or wavelike serrations to change the shape of the wing–either at its leading edge, its trailing edge, its surface, or some combination of the three–can make the wing quieter, or louder if poorly designed.

One source of inspiration for these serrations came from nature–owls, in particular. Thanks to specialized features on their wings, many of these birds can fly in effective silence.

Jaworski has spent nearly a decade studying those features and how they affect the production of noise.

“The owl wing has a kind of serrated leading edge, a porous and compliant trailing edge, and a velvety surface composed of flexible interlocking fibers that look like a jungle canopy when viewed under a microscope,” he says. “So one part of my work has investigated how owls may cleverly use the effects of elasticity and porosity to reduce noise.”

The owl wing also hosts a range of serrated shapes. Comb-like serrations on the leading edge. Fringe along the trailing edge. And a velvety down over the wing surface. But despite decades of study by researchers around the world, it’s still unclear exactly how these serrations help the owl fly with such stealth.

“The jury’s still out,” says Jaworski. They could be serving a strictly aerodynamic function. Or aeroacoustic function. Or both.

“So the other part of my work is looking at how edge geometry reduces noise,” he says. “People have been using serrations on edges to reduce noise on things like chevrons (the nozzle on airplane engines), fan blades, and turbine blades, but the question is, how do we optimize them? Should serrations be narrow? Wide? Jagged? Curved? There is very little information on predictive design based on physical principles that matches experimental noise measurements.”

Part of the optimization problem lies in the modeling of how air flows over any given serration. Right now, the models use what’s called the “frozen turbulence assumption.” It basically assumes that turbulence–a jumbled region of fluid, or air–passes over an edge without changing. In reality, this turbulence is strongly affected by the presence of the edge. It can stretch, it can rotate, it can change shape. And all of those distortions affect the wing’s noise level.

Which is why the current models have trouble predicting how much noise a given serration will produce. They don’t account for those distortions. They might predict if a noise will increase or decrease, but often not by how much.

“The prevailing theoretical model could say you’re supposed to get a five-decibel noise reduction. But then you carry out an experiment and you find only a one-decibel reduction. That’s a huge difference,” Jaworski says. “We know this distortion happens: you can see it in experiments, you can see it in computations. However, there isn’t a predictive, theoretical model that incorporates it. There’s not enough physics in the current models to furnish an accurate noise reduction. My proposed work deals with that distortion in terms of modeling how edges and other geometrical features interact with flow to affect the noise we hear.”

Understanding the physics will inform future designs. Jaworski’s study will focus on fixed wings, like those on an aircraft, rather than rotating propellers or blades. But he sees this work as a precursor to a time when the model could accurately–and efficiently–predict noise for any given edge and airflow speed.

“If you look at the research literature on serrated edges in the past decade, the vast majority of it is exploratory noise measurements in wind tunnels,” he says. “My goal is to improve the present theoretical models to help direct new experiments that converge on the central physical mechanisms. Our model may suggest an interesting avenue to pursue in the wind tunnel, and these experiments would in turn help confirm or refute the assumptions of our theory and challenge us to further refine our model. That’s the way to do it.”

###

Related Links

  • Lehigh University Faculty Profile: Justin W. Jaworski
  • P.C. Rossin College of Engineering and Applied Science
  • Website: National Science Foundation CAREER Award
  • NSF Award Abstract: Flow distortions of quiet serrated structures

Media Contact
Katie Kackenmeister
[email protected]

Original Source

https://engineering.lehigh.edu/news/article/jaworski-wins-2019-nsf-career-award

Tags: Algorithms/ModelsBiomechanics/BiophysicsMechanical EngineeringResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 26, 2025
Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 26, 2025

Root N-Hydroxypipecolic Acid Circuit Boosts Arabidopsis Immunity

July 26, 2025

Single-Cell Screens Reveal Ebola Infection Regulators

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    52 shares
    Share 21 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advanced Pressure-Velocity Patch Enhances Flight Detection

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.