• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

LED lighting in greenhouses helps but standards are needed

Bioengineer by Bioengineer
January 8, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Rutgers research reveals information gaps on LED lighting for indoor crops

IMAGE

Credit: A.J. Both/Rutgers University-New Brunswick


While LED lighting can enhance plant growth in greenhouses, standards are needed to determine the optimal intensity and colors of light, according to Rutgers research that could help improve the energy efficiency of horticultural lighting products.

Many lighting companies market their LED (light-emitting diode) products with claims of delivering an optimal “light recipe” that often consists of a combination of wavelengths and color ratios, such as a 4-to-1 red to blue ratio on the spectrum (colors of a rainbow). Plant scientists often use this information to evaluate the potential effects of lamps on plant growth and development. But standardized procedures on how to calculate these ratios are lacking, according to a study soon to be published in the journal Acta Horticulturae.

“The more efficient supplemental lighting sources are, the less electric power growers need to finish their crops,” said senior author A.J. Both, a professor and extension specialist in controlled environment engineering in the Department of Environmental Sciences in the School of Environmental and Biological Sciences at Rutgers University-New Brunswick. “We hope to help make indoor crop production more sustainable and affordable.”

Increased energy efficiency can have a big impact on the bottom line, and information about new crop lighting strategies will help the burgeoning indoor farming industry, Both said.

In greenhouses and controlled environments, electric lamps are used to supplement sunlight and extend lighting times to produce horticultural crops, such as vegetables, flowers and herbs, according to a previous study led by Both. Recent advances in energy-efficient LED technology provide the horticultural industry with multiple lighting options. But growers can’t easily compare technologies and LED options because of a lack of independent data on how lamps perform. That study led to a proposed standardized product label allowing for comparisons of lamps across manufacturers.

Both and colleagues continue to focus on independently assessing performance metrics such as power consumption, efficiency, light intensity and the light distribution pattern and relaying that information to commercial growers. Recent advancements have provided opportunities to precisely control the light from LED lamps and study their impacts on plant growth and development, according to Both’s research. Both and his team work closely with plant scientists who study the impact of light on plants grown for food or ornamental crops.

The new study recommends using a spectroradiometer, an instrument that measures light output across a specific range of wavelengths. Using such an instrument, various light ratios can be calculated. The researchers reported substantial differences in light ratios comparing sunlight with common lamps, including LED, high-pressure sodium, incandescent and fluorescent lamps used for plant lighting. The researchers hope that their work will contribute to the development of standard definitions for specific wavebands (ranges of wavelengths) that are important for plant growth and development.

The lead author of the new study is Timothy Shelford, a part-time research specialist at Rutgers who also works at Cornell University. Claude Wallace, a Rutgers graduate and part-time employee, also contributed to the study.

###

Media Contact
Todd Bates
[email protected]
848-932-0550

Original Source

https://news.rutgers.edu/led-lighting-greenhouses-helps-standards-are-needed/20200107#.XhSbOkdKi70

Tags: Agricultural Production/EconomicsAgricultureEcology/EnvironmentEnergy SourcesEnergy/Fuel (non-petroleum)Environmental HealthFood/Food ScienceNutrition/NutrientsOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Mapping Proteome-wide Selectivity of Diverse Electrophiles

Mapping Proteome-wide Selectivity of Diverse Electrophiles

October 30, 2025
blank

Tufts Physicists Shed Light on the Origins of Matter

October 30, 2025

Observing a Black Hole Flicker Across Time

October 30, 2025

When Electrons Harmonize and Perceive Their Surroundings

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1291 shares
    Share 516 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    201 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mexico’s Health Insurance: Advances, Gaps, and Future Challenges

Revolutionizing Diabetes Care with Carbon Nanoplatforms

Mapping Proteome-wide Selectivity of Diverse Electrophiles

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.