• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Leap forward in the discovery and development of new antibiotics

Bioengineer by Bioengineer
May 12, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New insights represent a major step forward in the formation of a new glycopeptide antibiotic to fight superbugs

IMAGE

Credit: Max Cryle

A powerful new insight, linked to recent studies by Monash Biomedicine Discovery Institute (BDI), has provided a new understanding of Glycopeptide antibiotics (GPAs) biosynthesis that allows new GPAs to be made and tested in the laboratory. This is vital in the quest to develop new antibiotics to keep pace with the ever-evolving ‘superbugs’ that continue to pose a serious threat to global public health.

Led by Associate Professor Max Cryle, the recent finding, published in Angewandte Chemie International Edition, shows for the first time, how a wide range of new GPAs can be made by combining the natural biosynthesis machinery and chemical modifications. This will now enable the discovery and development of new antibiotics for clinical use and is an avenue being rapidly pursued.

This study builds on the results of two further studies published in The Journal of Organic Chemistry and Organic Letters, which first revealed how to effectively use the GPA enzymes in the artificial environment of the laboratory to make GPAs effectively and to explore the limits of these enzymes.

GPAs are an important class of antibiotics, often used as the last resort against resistant bacteria. Vancomycin, for example, is used to fight infection by the deadly Staphylococcus aureus (golden staph). These antibiotics are complex peptides that are naturally produced by bacteria, and are still commercially produced in this way due to the complexities with making these purely through chemical means. Up until now, this has placed limits on the changes that could be made to antibiotics, allowing for only minor modifications.

“Nature has evolved some highly effective antibiotics, but we have previously been limited in how we can change these to improve their activity and beat resistance. Now, by combining natural enzymes with synthetic chemistry we can explore new antibiotics that have never been made before. This gives us a vital advantage in the struggle to overcome resistant bacteria in this important antibiotic class,” said Associate Professor Cryle.

Closely related to this, a further collaboration published last year in Nature Communications, investigated the biosynthesis of kistamicin, an unusual GPA, which recently has been shown to be an effective antibiotic with a totally new mechanism of killing bacteria. This study highlights the importance of being able to change the structures of GPAs to be able to make new antibiotics and how new mechanisms of antibiotic activity can be found even with existing antibiotic classes.

To highlight this point, further pioneering work by the Cryle Lab has led to the development of a new type of antibiotic based on GPAs that works in a completely different way to these current clinical antibiotics. Now the subject of a recently filed provisional patent, these new antibiotics don’t act by directly killing bacteria – instead, they help to find superbug infections within a patient and, once they have found them, – then activate their immune system to effectively clear the infection.

###

Read the full paper in Angewandte Chemie International Edition, titled: A chemoenzymatic approach to the synthesis of glycopeptide antibiotic analogues

About the Monash Biomedicine Discovery Institute at Monash University

Committed to making the discoveries that will relieve the future burden of disease, the newly established Monash Biomedicine Discovery Institute at Monash University brings together more than 120 internationally-renowned research teams. Our researchers are supported by world-class technology and infrastructure, and partner with industry, clinicians and researchers internationally to enhance lives through discovery.

Media enquiries

Monash media

+61 (0) 425 725 836

[email protected]

Media Contact
Wendy Smith
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/anie.202003726

Tags: BiochemistryBiodiversityBioinformaticsBiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Gender Identity: Breaking Down Stereotypes and Cognition

December 30, 2025
Unlocking Embryonic Secrets: Nematode Chromatin Accessibility Revealed

Unlocking Embryonic Secrets: Nematode Chromatin Accessibility Revealed

December 30, 2025

Impact of Wildlife on Livestock Production in Zimbabwe

December 30, 2025

Dictyostelium discoideum Adapts Gene Expression to Hypoxia

December 30, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    58 shares
    Share 23 Tweet 15
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    52 shares
    Share 21 Tweet 13
  • Nurses’ Views on Online Learning: Effects on Performance

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring SLC25A Carriers: Potential in Spaceflight Health

Neonatal Nurses Excel in Advancing Congenital Heart Screening

NGAL: Key Biomarker for AKI in Preterm Neonates

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.