• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

‘Lava lamp’ vesicles show how cells could self-organize

Bioengineer by Bioengineer
July 11, 2023
in Chemistry
Reading Time: 3 mins read
0
'Lava Lamp' Vesicles Show How Cells Could Self-organize
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The inside of a living cell is crowded with large, complex molecules. New research on how these molecules could spontaneously organize themselves could further our understanding of how cells manage their essential biochemistry in the crowded space. This research may also shed light on how the first living systems appeared and how they evolved their complexities. 

'Lava Lamp' Vesicles Show How Cells Could Self-organize

Credit: Wan-Chih Su, UC Davis

The inside of a living cell is crowded with large, complex molecules. New research on how these molecules could spontaneously organize themselves could further our understanding of how cells manage their essential biochemistry in the crowded space. This research may also shed light on how the first living systems appeared and how they evolved their complexities. 

Eukaryotic cells contain organized structures, or organelles, bounded by a lipid membrane. An example is the mitochondria, which generate energy in cells. In recent years, scientists have discovered that in addition to these organelles, groups of molecules can spontaneously form into temporary organelle, without a membrane, to carry out some specific function. 

“There may be simple physical mechanisms to create specialized ‘designer organelles’ on demand,” said Atul Parikh, professor of biomedical engineering at the University of California, Davis. 

Using a simplified model of a cell, Parikh’s laboratory has discovered how mixtures of polymers can parse into phase-separated droplets, like oils in a lava lamp, and that these droplets interact with the cell membrane in unexpected ways, including affecting the exterior structure of the cell. The work is published July 6 in Nature Chemistry. 

Wan-Chi Su, a graduate student working with Parikh, created artificial vesicles about the size of a living cell. These are essentially bubbles with a synthetic membrane, containing water with two polymers dissolved in it. Both polymers dissolve in water but repel each other, so if mixed together and left to themselves they would separate into two phases, like an unmixed salad dressing. 

Su and Parikh found that when they withdrew water from the vesicles, the polymers would start to form separated droplets, as expected. But instead of progressing to larger and larger droplets, they found that growth was stopped by interactions between the polymer droplets and the inside of the vesicle membrane, creating a mosaic of droplets. 

Signaling on outside of cell

These interactions also had an effect on the outside of the vesicle, causing a bubbling or ‘blebbing’ effect. This looks similar to an effect seen in living cells in some circumstances. 

“Coupling to the cell boundary prematurely stops phase separation and creates a mosaic of droplets. These 3D droplets inside the vesicle, interestingly, reorganize molecules in the 2D membrane, thus also signaling to the outside of the vesicle,” Parikh said. The researchers are confident that the phenomenon is generally applicable and not specific to this particular combination of molecules. 

The work shows how purely physical interactions – how polymers repel or attract each other – can give rise to complex organization in a simplified cell-like system, Parikh said. 

“We’re elucidating the physical and chemical principles behind biology,” he said. “It might say something about how life may have come about in the first place.”

Parikh and colleagues plan to expand the work to more complex systems, including living cells. 

Additional authors on the paper are: Douglas Gettel, UC Davis; James Ho C.S., Nanyang Technological University, Singapore; Andrew Rowland and Christine Keating, The Pennsylvania State University. 

The work was supported in part by the National Science Foundation and the U.S. Department of Energy Office of Science.



Journal

Nature Chemistry

DOI

10.1038/s41557-023-01267-1

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Kinetic control of shape deformations and membrane phase separation inside giant vesicles

Article Publication Date

6-Jul-2023

COI Statement

None declared.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Advancing Quantum Chemistry: Enhancing Accuracy in Key Simulation Methods

September 19, 2025
blank

Neutrino Mixing in Colliding Neutron Stars Alters Merger Dynamics

September 19, 2025

“‘Click-to-Glue’ Technology Transforms γδ T Cells into Precision Cancer-Fighting Warriors”

September 19, 2025

Advancing MRI Imaging: The Role of Coordination Clusters as Contrast Agents

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Managing Hemolytic Disease in Newborns: Key Insights

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

Advancing Quantum Chemistry: Enhancing Accuracy in Key Simulation Methods

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.