• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Laser-scribed graphene for sensors

Bioengineer by Bioengineer
July 11, 2023
in Health
Reading Time: 3 mins read
0
Figure1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

With the development of the information era, sensors capable of transmitting and detecting information have become the leading way to obtain information. Therefore, building a sensor system with a wide detection range, high sensitivity, and fast response is essential. Recently, graphene materials have received increasing attention for sensor applications due to their excellent electrical conductivity and physical, optical, thermal, and structural properties. These applications mainly include the detection of physical properties such as pressure and mechanical strain, chemical substances such as glucose{Lu, 2021 #36}{Lu, 2021 #36}, dopamine, proteins, heavy metals, and organic pollutants, as well as the detection of gas, temperature, and humidity.

Figure1

Credit: by Xing Liu, Fangyi Zhang, Qiwen Zhang, Zhengfen Wan, Xi Chen

With the development of the information era, sensors capable of transmitting and detecting information have become the leading way to obtain information. Therefore, building a sensor system with a wide detection range, high sensitivity, and fast response is essential. Recently, graphene materials have received increasing attention for sensor applications due to their excellent electrical conductivity and physical, optical, thermal, and structural properties. These applications mainly include the detection of physical properties such as pressure and mechanical strain, chemical substances such as glucose{Lu, 2021 #36}{Lu, 2021 #36}, dopamine, proteins, heavy metals, and organic pollutants, as well as the detection of gas, temperature, and humidity.

In a new paper published in Light: Advanced Manufacturing, scientists led by Doctor Zhengfen Wang and Professor Xi Chen from the University of Shanghai for Science and Technology have reviewed laser-scribed graphene for sensor fabrication.

Graphene has been prepared with various methods, such as mechanical exfoliation, chemical vapor deposition (CVD), epitaxial growth, and chemical reduction of graphene oxide. High-quality graphene can be obtained by mechanical exfoliation, but the low efficiency prevents the large-scale production of graphene. The CVD method is considered the most promising method for preparing large areas and high-quality graphene, but the CVD method is constrained by high energy consumption and cost. Graphene films prepared by the epitaxial growth method have good electrical conductivity and high optical transmittance. However, they require high-temperature processing, energy consumption, and transfer cost. Chemical reduction of graphene oxide is low in cost and high in efficiency but creates environmental pollution problems during the preparation process. Therefore, graphene’s low-cost, high-efficiency, pollution-free preparation methods remain very interesting.

The laser direct writing technique has recently attracted research applications in various fields due to its unique advantages of selective and localized reduction, precise and fast patterning, and the absence of masks and additional chemicals. With the laser direct writing technique, a laser is used to irradiate the carbon precursors and generate graphene by in-situ scribing. The whole laser scribing process takes only a few minutes, which significantly improves the efficiency of preparing graphene. This LSG by in situ, highly efficient, and flexible patterning. The excellent properties of high surface area, high thermal stability, and high electrical conductivity exhibited by LSG films have led to its use in a wide variety of applications. Those applications include photodetector, sensing, energy storage, memristors, holography, antibacterial applications, and antennas.

The research team discussed the preparation and modification of LSG, which can be prepared by different laser light sources and precursors, including carbon precursors such as GO and PI. Conventional graphene preparation methods are energy-intensive, costly, or environment-unfriendly, but this laser scribing method for graphene preparation overcomes these drawbacks. The LSG can be modified in one step by adjusting the laser parameters, atmosphere, and doping. The high surface area, good electrical conductivity, and simple and efficient fabrication process of LSG make it excellent potential for sensor applications.

The research team summarized the applications of LSG in stress sensors, biosensors, gas sensors, temperature sensors, and humidity sensors. The performance of the sensors can be optimized by using the appropriate laser power, scan speed, scan spacing, and suitable doping of the LSG in the preparation of the LSG. LSG sensors with integrated multiple sensing functions are further introduced. For multifunctional sensors, the crosstalk between different signals can be reduced by structural designs and patterning. In particular, the flexible patterned preparation and various flexible substrates make LSG also promising for wearable sensor applications.



Journal

Light: Advanced Manufacturing

DOI

10.37188/lam.2023.011

Share12Tweet8Share2ShareShareShare2

Related Posts

Mind Mapping Enhances Nursing Students’ Stress Relief and Performance

November 2, 2025

New Guidelines for Managing Thrombosis in Burn Patients

November 2, 2025

Assessing Nursing Care Plan Writing: Validity Study

November 2, 2025

Key Factors Influencing Colorectal Cancer Survival

November 2, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Quantum Network Entanglement Verified Without Measurement Devices

Exploring Non-Cavity Modes in Micropillar Bragg Microcavities

Mind Mapping Enhances Nursing Students’ Stress Relief and Performance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.