• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Laser light hybrids control giant currents at ultrafast times

Bioengineer by Bioengineer
April 13, 2023
in Chemistry
Reading Time: 4 mins read
0
Fig. 1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Ultrafast laser control over the fundamental quantum degrees of freedom of matter represents the outstanding foundational challenge to be met in establishing future information technologies beyond the semi-conductor electronics that defines our present time. Two of the most promising quantum degrees of freedom in this respect are the spin of the electron and the “valley index”, the latter an emergent degree of freedom of two dimensional materials related to the quasiparticle momentum. Both spintronics and valleytronics offer many potential advantages over classical electronics in terms of data manipulation velocity and energy efficiency. However, while spin excitations suffer from a dynamical loss of character arising from the spin-orbit induced spin precession, the valley wavefunction represents a “data bit” whose stability is threatened only by intervalley scattering, a feature controllable be sample quality. Valleytronics thus presents a potentially robust platform for going beyond classical electronics.

Fig. 1

Credit: The image may only be used with approriate caption and credit

Ultrafast laser control over the fundamental quantum degrees of freedom of matter represents the outstanding foundational challenge to be met in establishing future information technologies beyond the semi-conductor electronics that defines our present time. Two of the most promising quantum degrees of freedom in this respect are the spin of the electron and the “valley index”, the latter an emergent degree of freedom of two dimensional materials related to the quasiparticle momentum. Both spintronics and valleytronics offer many potential advantages over classical electronics in terms of data manipulation velocity and energy efficiency. However, while spin excitations suffer from a dynamical loss of character arising from the spin-orbit induced spin precession, the valley wavefunction represents a “data bit” whose stability is threatened only by intervalley scattering, a feature controllable be sample quality. Valleytronics thus presents a potentially robust platform for going beyond classical electronics.

 

At the heart of any future valleytronics or spintronics technologies will, in addition to quantum excitations encoding data bits, reside the control and creation of valley- and spin-currents. However, while sustained attention has been paid to the task of tailoring lightforms on ultrafast time scales to selectively excite valley quasiparticles, the precise creation and control of valley-currents and spin-currents – vital for any future valleytronics technology – has remained beyond the realm of ultrafast light control. In a study recently published in Science Advances, a team of researchers from the Max Born Institute in Berlin have shown how a hybrid laser pulse combining two polarization types allows complete control over ultrafast laser-light-induced currents.

Control over the charge state by circularly polarized light is now well established, the famous “spin-valley locking” of the transition metal dichalcogenides that has its origin in the valley selective response to circularly polarized light. This can be viewed as arising from a selection rule involving the magnetic quantum numbers of the d-orbitals that comprise the gap edge states. While circularly polarized light excites valley charge it does not, however, create a valley current as shown in Fig. 1a,b. This situation arises as for each quasi-momentum in the valley

Control over the charge state by circularly polarized light is now well established, the famous “spin-valley locking” of the transition metal dichalcogenides that has its origin in the valley selective response to circularly polarized light. This can be viewed as arising from a selection rule involving the magnetic quantum numbers of the d-orbitals that comprise the gap edge states. While circularly polarized light excites valley charge it does not, however, create a valley current as shown in Fig. 1a,b. This situation arises as for each quasi-momentum in the valley kvalley that is excited a corresponding –kvalley also is excited: the Bloch velocities thus cancel and there is no net valley current.

Full control over light induced valley currents, their magnitude and direction, thus requires going beyond the spin-valley locking paradigm of circularly polarized light. Creation of a valley excited state that does result in a net valley and spin current must therefore involving breaking the local kvalley , -kvalley  degeneracy. As the laser vector potential couples directly to crystal quasi-momentum, k ->k – A (t)/c, the most effective way in which this can be done is through a linearly polarized single cycle pulse with duration comparable to that of the circularly polarized pulse: such a pulse will evidently be in the “THz window” of 1 THz to 50 THz. As shown in Fig. 1d,e the hencomb lightform generates a substantial residual (i.e. persisting after the laser pulse) current. This results from a non-cancellation of the Bloch velocities of excited quasi-momentum, as the distribution of excited charge is now shifted off the high symmetry K point by exactly the polarization vector of the THz pulse, as shown in Fig. 1f.

 

 



Journal

Science Advances

DOI

10.1126/sciadv.adf3673

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

THz induced giant spin and valley currents

Article Publication Date

15-Mar-2023

COI Statement

We declare that none of the authors have competing financial or non-financial interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

SwRI’s Dr. Chris Thomas Honored as AIAA Associate Fellow

October 14, 2025
Physics-Based Machine Learning Paves the Way for Advanced 3D-Printed Materials

Physics-Based Machine Learning Paves the Way for Advanced 3D-Printed Materials

October 14, 2025

Could Cardamom Seeds Unlock New Antiviral Therapies?

October 14, 2025

Evaluating Cochlear Implants: Expanding Beyond Speech Recognition

October 14, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1241 shares
    Share 496 Tweet 310
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CSF Proteomics Uncovers Biomarkers in Pediatric Meningitis

Exploring Future Research Trends in Health Systems

Safety Assessment of Hyunburikyung-tang for Dysmenorrhea

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.