• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Laser-based technique captures 3D images of impressionist-style brushstrokes

Bioengineer by Bioengineer
May 20, 2020
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

High-definition digital models constructed from OCT images could enhance the study and conservation of artwork

IMAGE

Credit: Yi Yang, Penn State Abington

WASHINGTON — Researchers have developed a new strategy that uses optical coherence tomography (OCT) to acquire both the surface and underlying details of impressionist style oil paintings. This information can be used to create detailed 3D reconstructions to enhance the viewing experience and offer a way for the visually impaired to experience paintings.

“Visitors to art museums can’t closely examine paintings and see the artists’ techniques because of security and conservation concerns,” said research team leader Yi Yang from Penn State Abington. “Our new technology can create 3D reconstructions that can be rotated and magnified to view details such as brushstrokes. This would be especially useful for online classes.”

Yang and colleagues from Penn State University Park and New Jersey Institute of Technology report the new technique in the Optical Society journal Applied Optics. The research team brought together specialists in art history and conservation with electrical and optical engineers.

The new approach combines OCT with a mechanical scanning stage and new software that allows real-time sampling and removal of image artifacts. Information captured by the technique can be used to 3D print samples so that people with vision impairments can use touch to experience painting techniques such as Van Gogh’s brushstrokes and the pointillism of Seurat’s works.

“The ultra-high definition 3D information can also be used to repair damaged art by allowing a conservator to 3D print the damaged portion and attach it to the original painting,” said Yang. “In addition, the imaging technique can capture high resolution details of artworks that can preserve a digital copy in case of worst-case scenarios such as war, terrorism, natural disaster, heist and other catastrophes.”

Making OCT useful for art analysis

OCT is a laser-based non-invasive imaging technique that can capture images with micrometer resolution. Although it is commonly used for biomedical applications, the imaging technique is useful for art analysis because it can simultaneously capture both topographical information from a painting’s surface and the structure of underlying layers.

“Because today’s OCT systems are optimized for biomedical applications, they have a limited scanning range that severely limits the speed of collecting data from large areas,” said Yang. “We integrated a robotic scanning platform with an advanced OCT system and image processing software to capture the OCT data of paintings beyond the scanning range of typical commercial OCT systems.”

To increase the field of view, individual OCT images captured using the robotic scanner are digitally stitched together to form a larger image. To improve this process, the team developed software that removes distortions and other image artifacts that commonly arise during this type of digital stitching.

The researchers demonstrated their new technique by acquiring OCT images of a portion of an oil painting that mimics the unique impressionist style brushstrokes and measured 10 by 10 centimeters. They also produced a digital 3D model of the scanned area of the painting.

Now that the researchers have proved the new concept, they plan to optimize their system by making improvements in both the hardware and software.

###

After generating the 3D digital reconstruction of the scanned area, users can interact with the 3D model to gain more insights about the painting, such as brushstrokes. View the Digital 3D Model video based on OCT imaging data, here – https://youtu.be/OUusA1Q0N8k. Video credit: Yi Yang, Penn State Abington

Paper: X. Zhou, D. In, X. Chen, H. M. Bruhn, X. Liu, Y. Yang, “Spectral 3D reconstruction of Impressionist oil paintings based on macroscopic OCT imaging,” Applied Optics, 59, 15, 4733-4738 (2020).
DOI: https://doi.org/10.1364/AO.390326

About Applied Optics

Applied Optics publishes in-depth peer-reviewed content about applications-centered research in optics. These articles cover research in optical technology, photonics, lasers, information processing, sensing and environmental optics. Applied Optics is published three times per month by The Optical Society and overseen by Editor-in-Chief Ronald Driggers, University of Central Florida, USA. For more information, visit OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contact

[email protected]

Media Contact
James Merrick
[email protected]

Original Source

https://www.osa.org/en-us/about_osa/newsroom/news_releases/2020/laser-based_technique_captures_3d_images_of_impres/

Related Journal Article

http://dx.doi.org/10.1364/AO.390326

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Increasing Nitrogen and Rainfall May Dramatically Boost Greenhouse Gas Emissions from the World’s Largest Grasslands

Increasing Nitrogen and Rainfall May Dramatically Boost Greenhouse Gas Emissions from the World’s Largest Grasslands

November 7, 2025
blank

OSU Develops Revolutionary New Material Advancing Medical Imaging Technology

November 7, 2025

Heat-Resistant Microbes Uncover Molecular Secrets Behind Nature’s Ultimate Recycling System

November 7, 2025

Innovative MOF Membrane Electrolyzer Converts Air and Flue Gas CO2 into Pure Formic Acid, Advancing Carbon Neutrality

November 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Light Therapy Enhances Recovery from Brain Injury

Coaxial FeS/MoS2@C Composites Enhance Sodium Storage

Cost-Effective Al2O3/g-CN Nanocomposites for Energy Storage

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.