• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Large cells for tiny leaves

Bioengineer by Bioengineer
October 26, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Peter Huijser

In autumn, it is not only the colours that catch the eye, but also the different sizes and shapes of leaves. But what makes leaves of different plants differ so much in their shapes? Scientists at the Max Planck Institute for Plant Breeding Research in Cologne have now discovered how a protein called LMI1 can control leaf growth and shape.

Francesco Vuolo and colleagues from the laboratory of Max Planck Director Miltos Tsiantis are investigating the mechanisms underlying the dazzling variation in leaf shapes one can see in nature. Recently, they have turned their efforts to investigating little understood leaf parts called stipules. These outgrowths form at the base of a leaf during development and vary greatly in size and function in different plant species. In the model plant Arabidopsis, the mature stipules remain tiny, although they make up a substantial part of the young leaf. In other plants, such as garden pea, the stipules form a large part of the leaf.

Using a combination of genetics, microscopy and mathematical models, they were able to show that LMI1 keeps the stipules small. If the protein is produced in a cell during leaf development, it simply continues to grow instead of dividing. This form of cell maturation prevents the cell from developing into other cell types and limits the pool of cells available for further tissue growth. This, in turn, reduces the size of the final organ despite the early increase in cell growth. "The leaf remains smaller despite the larger cells," explains Vuolo.

LMI1 also plays a decisive role in the regulation of leaf morphology in other plants. The research team discovered that LMI1 is not produced in the large leaf-like stipule of pea plants, but instead in the upper part of the pea leaf, where thread-like climbing organs called tendrils form. "The cells in the tendrils also grow larger and divide less," said Vuolo. The pattern of LMI1 production in the pea leaf is therefore probably responsible for its characteristic shape, with thread-like tendrils at the tip of the leaf and large stipules at the base.

These important findings shed new light on the developmental origin of stipules, suggesting that they are in fact cryptic leaves that are maintained in a repressed state by LMI1. Such problems of how different plant parts like stipules, leaves and tendrils relate to each other already occupied the British natural scientist Charles Darwin who wrote about them in 1865. This study, therefore, solves both long-standing questions of plant morphology as well as new ways of investigating the role of growth in the evolution of leaf shape. "One day, they could contribute to the breeding of new plant varieties for agriculture with modified leaves or other organs. For example we are now investigating the role of the LMI1 protein in growth of the tomato fruit as an important agricultural trait," said Tsiantis, Director at the Max Planck Institute for Plant Breeding Research.

###

Original publication

Francesco Vuolo, Daniel Kierzkowski, Adam Runions, Mohsen Hajheidari, RemcoA. Mentink, Mainak Das Gupta, Zhongjuan Zhang, Daniela Vlad, Yi Wang, Ales Pecinka,Xiangchao Gan, Angela Hay, Peter Huijser, Miltos Tsiantis
LMI1 homeodomain protein regulates organ proportions by spatial modulation of Endoreduplication.
Genes and Development; 26 October, 2018

Media Contact

Dr. Miltos Tsiantis
[email protected]
49-221-506-2106
@maxplanckpress

http://www.mpg.de

Original Source

https://www.mpg.de/12408405/leaf-shape-lmi1

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Study Uncovers Variation in Viral Risk Among Bat Species

November 3, 2025
16th International Congress on Skin Ageing & Challenges 2025: Pioneering Innovation, Strategic Approaches, and Translational Advances

16th International Congress on Skin Ageing & Challenges 2025: Pioneering Innovation, Strategic Approaches, and Translational Advances

November 3, 2025

Wireless Neural Implant Smaller Than a Grain of Salt Monitors Brain Activity

November 3, 2025

Big Brains Demand Warm Bodies and Larger Offspring, New Study Finds

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Widespread LA-Area Wildfires Trigger Changes in Firefighters’ Blood Proteins, Prompting Health Concerns

Researchers Uncover Novel Method to Direct Stem Cell Fate

UV Light Emerges as a Game-Changer for Energy-Efficient Desalination

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.