• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Lack of plasmodium surface-protein blocks mosquito infection

Bioengineer by Bioengineer
November 9, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A previously unknown feature of the malaria parasite development has just been published in the journal Cell Host&Microbe. An international research team, led by a parasitologist at University of São Paulo and Pasteur Institute, Paris, has shown that, contrary to what has been assumed so far, a Plasmodium surface-protein plays an essential role at a stage of its life cycle that occurs not in the body of the host, but in the guts of the Anopheles mosquito. The finding has consequences for the search for vaccines or drugs that could alleviate the suffering caused by malaria. By 2015, 214 million people were affected by the parasite, especially in Africa.

Throughout its life cycle, the malaria parasite assumes different forms, at different points in the host and vector bodies. The infected female of the mosquito, when it bites a human, inoculates the parasite present in its saliva in the form called sporozoite. Through the bloodstream, sporozoites reach the liver of the host, where they invade a class of cells called hepatocytes. Inside them, they become merozoites, the form of the parasite that invades the red blood cells. It is when the red blood cells break because they are full of parasites that the typical fever attacks of the disease occur. Typically, the stages of the life cycle that happen inside de host are assexual. Part of the merozoites, however, remains inside the erythrocytes and differs in gametocytes, male and female. The next stages of the life of the parasite now occur in the body of the mosquito which, by sucking the blood of the host, brings into its body the blood cells laden with parasites, now sexually differentiated.

It is in this comeback to the mosquito organism that lies the discovery published in Cell Host and Microbe. To continue their development, the gametocytes need to leave the vacuole in which they are harboured inside the red cell. In cells modified to not express the surface protein (called MTRAP), the team has verified, gametocytes cannot leave the vacuole. As a result, the life cycle of the plasmodium is interrupted and the mosquito can no longer transmit it. Until now, parasitologists have attributed to this protein the ability of merozoites to invade red blood cells still within the host's body. The experiments also showed that for this step, the MTRAP protein is innocuous.

"The experiments allow a new approach to influence the life cycle of plasmodium," says parasitologist Daniel Bargieri of the Institute of Biomedical Sciences at USP. "We now have yet another target to be studied to block transmission of the parasite, which increases the potential for achieving the ambitious goal of eradicating malaria."

###

Article:

Plasmodium Merozoite TRAP Family Protein Is Essential for Vacuole Membrane Disruption and Gamete Egress from Erythrocytes Bargieri et al., 2016, Cell Host & Microbe 20, 618-630 November 9, 2016 ª 2016 The Authors. Corresponding Author: [email protected]

Published by Elsevier Inc. http://dx.doi.org/10.1016/j.chom.2016.10.015

Media Contact

USP Scientific Outreach Unit
[email protected]
55-112-648-1423
@usponline

http://sites.usp.br/distrofia

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Weather’s Impact on Anopheles Mosquito Populations in Lagos

August 23, 2025
Ghost Spider’s Maternal Care vs. New Fly Species

Ghost Spider’s Maternal Care vs. New Fly Species

August 23, 2025

DWI-Guided vs. MRI-Based IMRT in Head & Neck

August 23, 2025

Uncovering Cutaneous SCC Genomic Diversity via Single-Cell DNA

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Weather’s Impact on Anopheles Mosquito Populations in Lagos

Ghost Spider’s Maternal Care vs. New Fly Species

DWI-Guided vs. MRI-Based IMRT in Head & Neck

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.