• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Lab-reared maggots may save Darwin’s famous finches

Bioengineer by Bioengineer
January 25, 2018
in Biology, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Raising maggots may not sound glamorous, but that doesn't mean it's not important. In the latest issue of the Journal of Insect Science, Paola Lahuatte, a junior researcher at the Charles Darwin Foundation, and her colleagues reveal how they used chicken blood to rear the larvae of the parasitic fly Philornis downsi in the lab. This protocol may be the first to effectively rear an avian blood-feeding fly from egg to adult in the absence of its host. More importantly, it may prove to be a crucial tool in the fight to save endemic birds in the Galapagos islands, including the critically endangered mangrove finch.

Adult Philornis downsi feed on fruit, but as larvae they parasitize baby birds, usually small songbirds. The female fly lays its eggs in bird nests. Once hatched, first-instar larvae crawl into the nostrils of the nestling birds, where they feed on both blood and tissue. Larger, second-instar larvae leave the confined space of the nostrils and hide out in nest material during the day. They emerge at night to continue feeding on the chicks.

Philornis downsi infestation takes a serious toll on nestlings. In some cases, all of the young in an infested nest are killed by the parasites.

Philornis downsi is not native to the Galapagos Islands. The species was likely introduced accidentally in the 1960s via imported fruit and has since wreaked havoc on the islands' endemic bird populations. Parasitism is the leading cause of nestling mortality for at least one species of Darwin's finch, and some believe it is the main cause of decline of landbirds in the Galapagos Islands.

One method that has been proposed to control Philornis downsi is the "sterile insect technique" or SIT. This method produces large numbers of artificially sterilized insects (usually males) that are released into the wild population. Females that mate with sterile males produce no offspring, thus reducing the size of the next generation. SIT has been used to successfully eradicate populations of screwworm flies and has been useful in the control of certain species of fruit fly.

However, the ability to rear large numbers of flies in the laboratory is essential for this technique, which is difficult with Philornis downsi beause it would require raising large numbers of songbirds for them to feed on. Keeping captive songbirds in the lab to play host to these lethal parasites would not only be cruel, but also logistically difficult.

The chicken-blood diet developed by Lahuatte and her colleagues may be the first major step in making SIT control of Philornis downsi possible because it would make possible the rearing of large numbers of flies without songbird hosts.

###

The full article, "Rearing Larvae of the Avian Nest Parasite, Philornis downsi (Diptera: Muscidae), on Chicken Blood-Based Diets," is available at http://jinsectscience.oxfordjournals.org/lookup/doi/10.1093/jisesa/iew064.

The Journal of Insect Science is published by the Entomological Society of America, the largest organization in the world serving the professional and scientific needs of entomologists and people in related disciplines. Founded in 1889, ESA today has more than 7,000 members affiliated with educational institutions, health agencies, private industry, and government. Members are researchers, teachers, extension service personnel, administrators, marketing representatives, research technicians, consultants, students, and hobbyists. For more information, visit http://www.entsoc.org.

Media Contact

Richard Levine
[email protected]
301-731-4535
@EntsocAmerica

http://www.entsoc.org

Share12Tweet7Share2ShareShareShare1

Related Posts

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

February 7, 2026

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

February 7, 2026

Early Tuberculosis Treatment Lowers Sepsis Mortality in People with HIV

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.