• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Lab-grown neurons improve breathing in mice after spinal cord injury

Bioengineer by Bioengineer
June 6, 2018
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Drexel University

Researchers from Drexel University College of Medicine and the University of Texas at Austin improved respiratory function in rodents with spinal cord injuries after successfully transplanting a special class of neural cells, called V2a interneurons. Their results, published this week in the Journal of Neurotrauma, indicate that these lab-grown cells have the potential to one day help paralyzed patients breathe without a ventilator.

"Our previous study was one of the first to show that V2a interneurons contribute to plasticity, or the ability of the spinal cord to achieve some level of self-repair. This study capitalized on those findings by demonstrating that we can grow these cells from stem cells, that they survive in an injured spinal cord, and that they can actually improve recovery," said Michael Lane, PhD, an assistant professor of neurobiology and anatomy in the College of Medicine and the study's principal investigator.

Though spinal cord injury impacts a wide range of motor systems, recent evidence suggests the body is capable of spontaneous improvements, through growth of nerve fibers and the formation of new circuits. Lane's laboratory is interested in studying – and strengthening – this natural phenomenon, in order to treat a potentially fatal side effect of paralysis: poor respiratory health. Not only do patients with high-level injuries require mechanical assistance to breathe, but they are also prone to lung congestion and respiratory infections.

"By understanding the body's own attempt at repair, we hope to amplify that process therapeutically with cell transplantation and rehabilitation," said Lyandysha Zholudeva, the study's lead author and a doctoral candidate in the College of Medicine. "Now we've identified one of the cell types that contributes to the formation of new pathways that lead to plasticity."

For the past decade, there has been a growing interest in using neural precursors – cells that can develop into the various types found in the brain – to augment plasticity and treat spinal cord injury. Neural cells work with all the other cell types of the body to produce the range of functions of the central nervous system, including circulation, respiration and digestion.

Interneurons are particularly attractive candidates for the injured spinal cord, because they relay signals between sensory and motor neurons. However, these cells are a diverse bunch, and it has remained unclear exactly what type of interneuron could survive and thrive in an injured spinal cord after transplantation. Lane and other researchers pinpointed V2a interneurons as a potential contender, since they are "excitatory" (have greater action potential) and typically grow in the right direction for repair. Previous studies have also suggested that this class of interneurons may be involved in breathing, and Lane's work has shown that this role may be even more important after spinal cord injury.

In a study published in 2017, Lane and his colleagues found that weeks after injury, the spinal cord recruits V2a interneurons, which become wired into the "phrenic" circuit in the spinal cord that controls the diaphragm (an essential muscle for breathing). In their more recent study, the researchers explored whether transplanting more V2a cells into the injured spinal cord could enhance plasticity and lead to longer-lasting outcomes.

Lane explained that identifying specific cell types that will repair breathing (or any other symptom), rather than transplanting a heterogeneous population, is key to effective treatment.

"Stem cell transplantation is gaining interest both within science, and within clinical trials, but scientific evidence shows that some types of cells may actually limit recovery. So, you have to know what will happen to the cells you are putting in the body," he said. "The transplantation field is moving into an era where there is more interest in tailoring cell therapies."

To test their hypothesis, the Drexel team collaborated with Shelly Sakiyama-Elbert, PhD, a cellular engineer at the University of Texas, to differentiate embryonic stem cells into V2a interneurons and combine them with neural progenitor cells from a rodent spinal cord. Once combined, the V2a cells were transplanted into 30 animals with high cervical moderate-severe injuries.

One month following transplantation, the donor cells had survived and become mature neurons in all 30 animals. Recording activity of the diaphragm muscle, the researchers found that breathing significantly improved in the animals that had received V2a interneurons compared to the controls.

"Even this incremental difference reassures us that we have identified a cell type to really concentrate on, and that we should continue to investigate their potential even further," Zholudeva said.

Moving forward, the researchers plan to continue to determine how to best optimize the transplant dose, growth and connectivity of V2a cells in the injured spinal cord. Lane said the potential contribution of V2a cells to functional recovery could be enhanced with rehabilitation, neural-interfacing and activity-based therapies.

"For now, we've focused on one cell, and one time-point after injury, so there is more work still to be done," Lane said. "But it is a big advance – we have at least one cell that contributes to recovery and one day, that may lead to better treatments."

###

Media Contact

Lauren Ingeno
[email protected]
215-895-2614
@DrexelNews

http://www.Drexel.edu/

Original Source

http://drexel.edu/now/archive/2018/June/V2a-Neurons-Improve-Breathing-Spinal-Cord-Injury/ http://dx.doi.org/10.1089/neu.2017.5439

Share12Tweet7Share2ShareShareShare1

Related Posts

Study finds gum disease and cavities may elevate risk of stroke

October 22, 2025

PET Imaging of Inflammation Forecasts Recovery and Informs Treatment Strategies Following Heart Attack

October 22, 2025

University of Louisville and UofL Health Awarded $11.5 Million to Advance Novel Cancer Immunotherapy Research

October 22, 2025

Gender Disparities Persist in Lung Transplants Despite Policy Reforms

October 22, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1275 shares
    Share 509 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    306 shares
    Share 122 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    145 shares
    Share 58 Tweet 36
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    131 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Deterministic Soliton Microcombs in Cu-Free PICs

New Genomic Test May Help Melanoma Patients Avoid Lymph Node Biopsy Surgery

Study finds gum disease and cavities may elevate risk of stroke

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.