• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Lab-on-fiber could shine light on disease

Bioengineer by Bioengineer
March 25, 2014
in Chemistry
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

“Imagine turning on your home lab kit, pricking your finger, and blotting the blood on an array of fiber probes. In just a few minutes, the machine would automatically e-mail the results to your doctor, who could get back to you within hours if there was a problem. Meanwhile, you could get on with the rest of your day.” This is the scenario painted in a detailed essay in IEEE Spectrum of what the future might hold, according to Jacques Albert, who heads the Advanced Photonic Components group at Carleton University in Ottawa, Canada.

Lab-on-fiber could shine light on disease

Credit: James Archer/anatomyblue, via IEEE

Albert’s team together with collaborating groups around the globe, including the Université de Mons in Belgium and Jinan University in China, are working on the lab-on-fiber, that is, the use of optical glass fibers as platforms for chemical sensors. This is an approach to bringing on a more affordable mobile labs system in which chemical sensors do the monitoring. Optical glass fibers hold the key to labs on fiber with their tiny diameter yet huge information-carrying capacity and dirt-cheap cost, said Albert.

Attempts to develop labs with components that are cheap and portable have been evident for many years. Lab-on-a-chip sensors have looked promising, he wrote, but obstacles have stood in the way of progress; he gave examples such as a chip’s metal conductors that may corrode or short, or the chip having arsenic, toxic to humans. Another drawback he said has been size. Albert also said some researchers seek to replace a chip’s electronic circuits with optical ones.

“By using light rather than current to read chemical reactions, a photonic chip works reliably in aqueous solutions, is immune to electromagnetic radiation, tolerates a wide range of temperatures, and poses fewer risks to biological tissues.” A photonic lab on a chip, however, has not been any magic bullet either, he said, because of size and expense.

Instead, Albert made a case for what his team and colleagues are developing, a lab on fiber. He said, “We coat this probe with a chemical compound, called a reagent, that will interact with whatever target molecules we want to measure, such as blood enzymes or food additives.”

Ultimately, they aim to develop a lab on fiber that can be inserted directly into humans to monitor biological changes realtime.

“We are currently planning experiments—first in test tubes and eventually in animals—to see if a fiber probe can detect metastasized cancer cells in the bloodstream. We hope to shed light (literally) on the process by which these cells invade other organs.”

The team also hopes their work leads to developments in scanner screening technologies less invasive than tools such as biopsies. He posed an example where a doctor may insert a fiber probe into a blood vessel using a hypodermic needle. “no more painful than a flu shot.”

Nonetheless, further developments will be necessary before such ideas materialize. He said it likely will be at least five years before lab-on-fiber instruments are ready for commercial use. One challenge is to figure out how to toughen the probes’ surface coating so they can be stored for several months without becoming unstable and losing their ability to bind with target molecules.

Story Source:

The above story is based on materials provided by IEEE, Nancy Owano.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

LHAASO Sheds Light on the Origin of the Cosmic Ray “Knee” Phenomenon

November 16, 2025
Metal-Hydroxyls Drive Proton Transfer in O–O Formation

Metal-Hydroxyls Drive Proton Transfer in O–O Formation

November 15, 2025

What Insights Do Polymers Offer for Advancing Alzheimer’s Disease Treatment?

November 15, 2025

Breakthrough: Lead-Free Alternative Unveiled for Key Electronics Component

November 15, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • Neurological Impacts of COVID and MIS-C in Children

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Solutions: Combatting Loneliness in Older Adults

Multi-Omics Unveils Epigenetic Dynamics in Skin Cancer

Roy Adaptation Model Boosts Elderly Health in Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.