• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Knowledge of cycad branching behavior improves conservation

Bioengineer by Bioengineer
January 12, 2021
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Guam’s branched cycads less vulnerable to destruction by non-native insect

IMAGE

Credit: Montgomery Botanical Center

Research on cycad trees in Colombia, Guam, and the Philippines has illuminated how knowledge of their branching behavior may benefit conservation decisions for the endangered plants. In a study published in the December issue of the journal Horticulturae, scientists from the University of Guam and the Montgomery Botanical Center in Florida show that the number of times a cycad tree produces a branch can be used to infer the sex of the tree. The findings have practical applications for use of the sexual dimorphism that is described.

Cycads are unique seed-producing plants. Conservation actions are being implemented for many species around the world as cycads are being threatened by human activity.

The arborescent cycad stem is constructed using an approach that botanists call pachycaulous. These stems are thick and produce few branches compared with other tree species.

“Several historical reports from botanic gardens revealed a greater number of lifetime branching events occurred for male cycad plants,” said Michael Calonje, cycad biologist at the Montgomery Botanical Center and co-author of the study. “We decided to take a look into some of our field data from four arborescent cycad species to determine if this form of sexual dimorphism also occurred in natural habitats.”

The robust analysis of branching behavior from 2,695 cycad trees in the wild confirmed the propensity of male trees to branch more often than female trees. The results confirmed that male trees produced two to three times more branches per tree than female trees. In fact, 80% of the female trees for the three Cycas species from Guam and the Philippines were unbranched.

An understanding of how frequently cycads experience reproductive events is helpful for interpreting these results, as branching often occurs immediately after the production of reproductive structures.

“Cycad biologists call these structures strobili,” said Benjamin Deloso, University of Guam cycad specialist. “The branching behavior that occurs after strobili production is called isotomous, meaning that a single branch splits into two equal-sized branches.”

According to Deloso, male cycads produce strobili much more often than female cycads, thereby accumulating more times over a lifetime when subsequent isotomous branching events may occur.

Most natural populations of cycad trees contain roughly 50% male trees and 50% female plants. However, a chronic difficulty in conducting field work is that most trees do not exhibit active strobili, so the unambiguous determination of the sex of cycads in the wild is difficult. The authors contend that an understanding of branch dimorphism provides a new tool that conservationists may exploit to better assess population traits.

Important implications for Guam’s Cycas micronesica population

The new knowledge has illuminated an interesting outcome from the threats to Cycas micronesica conservation on the island of Guam. Several non-native insect pests invaded the island in 2003–2005, and these invasions initiated a series of events that have killed 96% of the cycad population. A comparison of the pre-invasion branching data versus the contemporary branching data reveals that most of the unbranched trees have been killed and fewer of the branched trees have been killed.

According to Calonje and Deloso, these observations indicate that the relentless herbivory by the non-native insects has preferentially killed more female trees. This information is crucial for conservation decision-makers because recovery of the island’s cycad population may become constrained by the scarcity of female trees. A practical use of this new knowledge is in ongoing tree salvage projects, where cycad trees are being rescued from construction sites. The conservation practitioners may use the branching data to develop a more accurate estimate of parity between male and female trees during selection of which trees to rescue.

The results also provide an example of the benefits of research on healthy plant populations. For research results to be most informative, conservationists need the knowledge to be generated from plants and habitats that do not exhibit contemporary threats. That knowledge can then inform conservation goals by providing benchmarks that serve as species recovery goals.

###

Further reading:

Marler, T.E. and M. Calonje. 2020. Stem branching of cycad plants informs horticulture and conservation decisions. Horticulturae 6: 65;
doi:10.3390/horticulturae6040065.

Media Contact
Jonas Macapinlac
[email protected]

Related Journal Article

http://dx.doi.org/10.3390/horticulturae6040065

Tags: BiologyDevelopmental/Reproductive BiologyEcology/EnvironmentEntomologyForestryPlant SciencesPollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

Excessive Intake of Ultra-Processed Foods Associated with Systemic Inflammation

September 9, 2025

Cellular Acyl-CoA Profiling Uncovers Mitochondrial CoA Transporters

September 9, 2025

Targeting NAD+ in Clinics: New Strategies and Challenges

September 9, 2025

Bee-Sting Inspired Microneedles from Chung-Ang University Poised to Transform Drug Delivery

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • Physicists Develop Visible Time Crystal for the First Time

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ultrasonic Regeneration Revives Nano-Phase Change Emulsions for Enhanced Low-Temperature Performance

City of Hope Unveils Innovative National Clinical Trials Model to Fast-Track Cancer Research

Excessive Intake of Ultra-Processed Foods Associated with Systemic Inflammation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.