• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Knee joint signals bones to grow

Bioengineer by Bioengineer
July 25, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists from the Memorial Sloan Kettering Cancer Center, US, have revealed a communication system between the knee joint and developing bones in mice, which controls bone growth during early development and after injury.

Writing in the journal eLife, the authors suggest that bone growth is controlled not only from within the bone itself, but by neighboring cells situated in nearby joints. These cells 'talk' to developing bone cells using different communication channels, instructing them to grow and mature. A better understanding of these communication channels could be used to improve treatment for correcting bone growth defects.

Bone growth is an intricately controlled process which begins with an initial temporary cartilage structure — the growth plate — and involves many types of cell and signaling molecules. Previous studies have shown that growth follows a specific genetic programme orchestrated within the growth plate. However, classic experiments where the position of different growth plates was interchanged suggested that the local environment can modulate this genetic programme.

"The identification of local signals coming from elsewhere and their contribution to the growth plate are only just beginning to emerge," explains lead author Alberto Roselló-Díez, Postdoctoral Research Fellow at Sloan Kettering. "A major obstacle is the lack of models where only cells outside of the growth plate can be altered, so we developed a mouse model to study the contribution of individual communication pathways outside the plate."

They first tested whether damage to cells surrounding the growth plate would affect bone growth in the left leg of mice. The growth plate itself was left intact, as was the right leg for comparison to the left. Consistent with the expected role of neighboring signals, damaging these surrounding tissues impaired growth plate function and stunted bone growth.

Further investigation revealed that loss of surrounding cells causes multiple changes in cell communication, which impairs bone cells' ability to multiply and increase in size. One pathway — the insulin-like signaling pathway — was much less active in the left knee joint of the mice. A closer look showed that immune cells were suppressing this pathway, leaving the growth plate without this vital signal. However, replenishing the signal didn't completely reverse the effect, suggesting insulin-like signaling is one of several important pathways.

The team next looked at whether classic damage response signals were activated in the knee joint after injury. They found similar patterns in the left mouse leg to those seen in osteoarthritis, not only in the knee structures but also in the cartilage that wraps the bones' ends, suggesting that the injury response is a further mechanism that triggers altered signaling from the knee joint to the growth plate.

At later stages of development, the insulin-like pathway was no longer active in the knee joint of either limb, showing that bone growth eventually becomes independent of this external influence. The authors suggest this fits with the idea that local signals from outside the growth plate are important in establishing body proportions early on in development.

"We have identified two components of the knee joint that control bone growth, at least following injury, and we've shown that signals from these components influence distinct growth plate signaling pathways and lead to reduced bone growth," concludes Alexandra Joyner, PhD, senior author and Developmental Biologist at Sloan Kettering. "Further studies are needed to confirm and expand the repertoire of local regulators of bone growth, adding valuable insights to evolutionary studies and providing avenues for therapies that can correct long bone growth defects."

###

Reference

The paper 'Altered paracrine signaling from the injured knee joint impairs postnatal long bone growth' can be freely accessed online at https://doi.org/10.7554/eLife.27210. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

Media contact

Emily Packer
eLife
[email protected]
01223-855373

About eLife

eLife is a unique collaboration between the funders and practitioners of research to improve the way important research is selected, presented and shared. eLife publishes outstanding works across the life sciences and biomedicine – from basic biological research to applied, translational and clinical studies. All papers are selected by active scientists in the research community. Decisions and responses are agreed by the reviewers and consolidated by the Reviewing Editor into a single, clear set of instructions for authors, removing the need for laborious cycles of revision and allowing authors to publish their findings quickly. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society and the Wellcome Trust. Learn more at elifesciences.org.

Media Contact

Emily Packer
[email protected]
01-223-855-373
@elife

http://www.elifesciences.org

http://dx.doi.org/10.7554/eLife.27210

Share12Tweet7Share2ShareShareShare1

Related Posts

New Lacewing Species Reveals Jurassic Diversity in China

New Lacewing Species Reveals Jurassic Diversity in China

August 23, 2025
Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

August 23, 2025

Ancient Skull Sheds Light on Plotopteridae Origins

August 23, 2025

Pollen, Karyotype, and Scent: Classifying Syringa Species

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Firsekibart Shown Safe in Phase 1 Study

New Lacewing Species Reveals Jurassic Diversity in China

Skin Microbiome Changes in Multiple System Atrophy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.