• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Kidney cells from amniotic fluid obtained from cesarean section at delivery

Bioengineer by Bioengineer
May 7, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Rahman MS, Spitzhorn LS, Wruck W, Hagenbeck C, Balan P, Graffmann N, Bohndorf M, Ncube A, Guillot PV, Fehm T, Adjaye J. The presence of human mesenchymal stem cells of…

Amniotic fluid, the liquid surrounding the fetus, can be routinely obtained without harming the mother or the baby. Previously, Prof. Dr. Adjaye's team and others demonstrated that amniotic fluid contains mesenchymal stem cells with great differentiation and regenerative potential. Importantly, amniotic fluid stem cells are immune privileged, non-carcinogenic and their potential clinical applications such as cell-replacement therapies to treat bone defects, ischemic stroke, bladder dysfunction and pulmonary disease have been described. However, the origin of amniotic fluid stem cells has been enigmatic.

A collaborative study between the Institute for Stem Cell Research and Regenerative Medicine (Prof. Dr. James Adjaye), the Department of Obstetrics and Gynaecology (Prof. Dr. med. Tanja Fehm) from the Medical Faculty of Heinrich Heine University Düsseldorf-Germany and the Institute for Women's Health, Maternal and Fetal Medicine Department (Dr. Pascale V. Guillot)- University College London, published in the journal- Stem Cell Research and Therapy shows for the first time that human amniotic fluid contains mesenchymal stem cells of kidney origin.

The numbers of these cells increased with gestational time- meaning amniotic fluid obtained during delivery had the highest number simply because of the increased volume of amniotic fluid (composed of fetal urine) bathing the fetus at this stage.

Lead authors- Md Shaifur Rahman and Lucas-Sebastian Spitzhorn state-"the kidney-related features of amniotic fluid stem cells are of high interest as a promising cell source for research on nephrogenesis, modelling kidney-related diseases, nephrotoxicity testing and drug screening".

The derivation of 3D-kidney organoids directly from these cells without the need of induced pluripotent stem cells or renal cells cultured from kidney biopsies will add valuable insights into how the kidney develops.

Prof. Dr. Adjaye senior author, concludes: "Our ongoing research on renal stem cells isolated directly from urine, combined with molecular biology and bioinformatic analysis of the genes expressed in these cells enabled us to define these cells as originating from the kidney. At present kidney dialysis and kidney transplantation for managing kidney diseases are limited due to the shortage of compatible donated organs and high associated costs. In view of this, amniotic fluid should be regarded comparably with cordblood as valuable sources of fetal stem cells with regenerative potential and useful for therapeutic applications."

###

Rahman MS, Spitzhorn LS, Wruck W, Hagenbeck C, Balan P, Graffmann N, Bohndorf M, Ncube A, Guillot PV, Fehm T, Adjaye J. The presence of human mesenchymal stem cells of renal origin in amniotic fluid increases with gestational time. Stem Cell Res Ther. 2018 Apr 25;9(1):113. doi: 10.1186/s13287-018-0864-7. PubMed PMID: 29695308.

Media Contact

James Adjaye
[email protected]
49 211 8108191

http://www.uni-duesseldorf.de/

Related Journal Article

http://dx.doi.org/10.1186/s13287-018-0864-7

Share12Tweet7Share2ShareShareShare1

Related Posts

Vitamins’ Role and Mechanisms in Obesity Control

September 18, 2025

Engineered Prime Editors Minimize Genomic Errors

September 18, 2025

New Study Confronts the Cardiovascular Impact of COVID-19 Head-On

September 18, 2025

Groundbreaking Report Reveals Strategies to Address COVID-19’s Lasting Impact on Cardiovascular Health

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Vitamins’ Role and Mechanisms in Obesity Control

Engineered Prime Editors Minimize Genomic Errors

New Study Confronts the Cardiovascular Impact of COVID-19 Head-On

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.