• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Key regulator of bone development identified

Bioengineer by Bioengineer
December 9, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Liu Laboratory, Penn State University

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes — a condition known as brachydactyly. The discovery was made by researchers at Penn State University who knocked out the Speckle-type POZ Protein (Spop) in the mouse and characterized the impact on bone development. The research, which appears online in the journal Proceedings of the National Academy of Sciences on December 5, 2016, redefines the role of Spop during bone development and provides a new potential target for the diagnosis and treatment of bone diseases such as osteoporosis.

"The Spop protein is involved in Hedgehog signaling — a well-studied cell-to-cell communication pathway that plays multiple roles during development," said Aimin Liu, associate professor of biology at Penn State and the corresponding author of the study. "Previous studies done in cell culture suggested that Spop negatively regulates or 'turns down' Hedgehog signaling. However, in our study, we show that Spop positively regulates the pathway downstream of a member of the Hedgehog family, a protein called Indian Hedgehog, during bone development. This new understanding adds to our knowledge of the genetic basis of bone development and could open new avenues to study bone disease."

Indian Hedgehog (Ihh) plays an essential role in bone development. It is near the top of a hierarchical cascade of genes that program cells to produce cartilage and bone. Ihh controls gene expression by regulating the activity of the transcription factors — proteins that control the expression of other genes — Gli2 and Gli3. Gli2 acts mainly as an activator of gene expression and Gli3 acts mainly to repress gene expression. The Spop protein tags the Gli proteins to be degraded in the cell.

"Previous studies led to a hypothesis that a loss of Spop function would increase Hedgehog signaling because the Gli activators were no longer being degraded," said Hongchen Cai, a graduate student at Penn State and an author of the paper. "We were surprised to see in our study the repressor of gene expression, Gli3, built up in developing bone, but not the activator of gene expression, Gli2. This imbalance led to an overall decrease in Hedgehog signaling."

In order to study the role of Spop in bone development more closely, the researchers knocked the gene out specifically in the limb. Limbs that lacked Spop had less dense bone, mimicking osteopenia — a human condition characterized by low bone density, but not as severe as osteoporosis. The limbs also had shorter than normal fingers and toes. The researchers also showed that the effects of losing Spop could be mitigated by simultaneously reducing the amount of Gli3 in the limbs.

###

The research was funded by the National Institutes of Health, the Penn State Eberly College of Science, and a J. Lloyd Huck Dissertation Research Grant. Additional support was provided by the Huck Institutes of the Life Sciences at Penn State.

CONTACTS:

Aimin Liu: [email protected], (814) 865-7043
Barbara K. Kennedy: [email protected], (814) 863-4682

Media Contact

Barbara K. Kennedy
[email protected]
814-863-4682
@penn_state

http://live.psu.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Cardiovascular Complications from Hypoparathyroidism: A Case Study

September 3, 2025
blank

Transformers Enhance Sentiment Analysis in Chinese Education

September 3, 2025

Assessing Climate Impact of Green Biorefineries in Denmark

September 3, 2025

Microbiome Traits Boost Plant Growth, Sustain Agriculture

September 3, 2025
Please login to join discussion

POPULAR NEWS

  • Needlestick Injury Rates in Nurses and Students in Pakistan

    297 shares
    Share 119 Tweet 74
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    118 shares
    Share 47 Tweet 30

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cardiovascular Complications from Hypoparathyroidism: A Case Study

Transformers Enhance Sentiment Analysis in Chinese Education

Assessing Climate Impact of Green Biorefineries in Denmark

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.