• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Key material, solid electrolyte, created for all-solid-state batteries

Bioengineer by Bioengineer
June 21, 2023
in Chemistry
Reading Time: 3 mins read
0
All-solid-state lithium battery
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Osaka, Japan – While most of us only associate room temperature with personal comfort, this temperature is exactly what scientists hope for to make certain material phases possible. Osaka Metropolitan University scientists have achieved an unprecedented stabilization of the high-temperature phase of Li3PS4—a critical material for all-solid-state batteries—thus attaining exceptional ionic conductivity even at room temperature. This breakthrough brings us one step closer to the realization of all-solid-state batteries and the adoption of this technology in a broad range of applications, including electric vehicles.

All-solid-state lithium battery

Credit: Akitoshi Hayashi, Osaka Metropolitan University

Osaka, Japan – While most of us only associate room temperature with personal comfort, this temperature is exactly what scientists hope for to make certain material phases possible. Osaka Metropolitan University scientists have achieved an unprecedented stabilization of the high-temperature phase of Li3PS4—a critical material for all-solid-state batteries—thus attaining exceptional ionic conductivity even at room temperature. This breakthrough brings us one step closer to the realization of all-solid-state batteries and the adoption of this technology in a broad range of applications, including electric vehicles.

All-solid-state batteries are expected to be put to practical use as next-generation energy storage devices that integrate high levels of safety and enhanced energy density, thereby realizing a sustainable society. All-solid-state lithium batteries operate by facilitating the movement of lithium ions through a solid electrolyte. However, since ions cannot move freely within solids, the development of solid electrolytes with high ion conductivity that, like liquid electrolytes, enable the rapid movement of lithium ions, is imperative.

A research group led by Professor Akitoshi Hayashi and Associate Professor Atsushi Sakuda of the Graduate School of Engineering at Osaka Metropolitan University succeeded in stabilizing, for the first time, the high-temperature phase of Li3PS4 (α-Li3PS4), which exhibits high ion conductivity, at room temperature via rapid heating to crystallize Li3PS4 at 400 °C min−1. Since Li3PS4 is a promising solid electrolyte, this achievement makes possible the development of materials for all-solid-state batteries with higher performance.

Professor Hayashi elaborated, “Li3PS4 showcases varied crystal structures depending on temperature variations. The high-temperature phase is generally recognized for its superior ionic conductivity; however, the challenge has been to stabilize this phase at room temperature. We finally accomplished it by focusing on the heating rate during crystallization. This is the culmination of nearly 20 years dedicated to the development of all-solid-state battery materials.”

The results is published in the Journal of the American Chemical Society.

###

About OMU 

Osaka Metropolitan University is a new public university established in April 2022, formed by merger between Osaka Prefecture University and Osaka City University. For more research news visit https://www.omu.ac.jp/en/ or follow @OsakaMetUniv_en and #OMUScience.



Journal

Journal of the American Chemical Society

DOI

10.1021/jacs.3c03827

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Stabilizing High-Temperature α-Li3PS4 by Rapidly Heating the Glass

Article Publication Date

21-Jun-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

October 12, 2025
Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

October 10, 2025

Wirth Named Fellow of the American Physical Society

October 10, 2025

UTA Physicist Secures $1.3 Million Grant to Advance Neutrino Research

October 10, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1229 shares
    Share 491 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23
>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Lithium Storage in Zn2GeO4 with VS2 Nanosheets

Unraveling the Mysteries of ‘Chemo Brain’

Ensuring AI Safety: A Universal Responsibility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.