• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Keeping liquids off the wall

Bioengineer by Bioengineer
March 9, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: NASA

On Earth, liquid flows downhill thanks to gravity. Creating an effective liquid fuel tank involves little more than putting a hole at the bottom of a container.

That won't work in space, though. In microgravity, with no gravity to force liquids to the bottom of a container, they cling to its surfaces instead. Spacecraft employ special devices such as vanes, sponges, screens, and channels to guide a liquid where it is needed – to an engine in the case of fuel or propellant.

The Slosh Coating investigation tests using a liquid-repellant coating inside a container to control the movement of liquids in microgravity. Researchers will compare the behavior of liquid in two tanks, one with the coating and one without, aboard the International Space Station. For this test, the clear tanks contain colored water. High definition cameras will record the motion of the water as the containers are put through a series of maneuvers.

In microgravity, when liquid propellant spreads out and evenly coats the walls of a container, it creates two problems, explains principal investigator Brandon Marsell of NASA's Launch Services Program at Kennedy Space Center. Heat on the outside of the tank can boil off the propellant, which wastes fuel, and fuel may not reach the engine to start it when needed.

"We thought if we painted liquid-repelling material on the walls of the tanks, theoretically, instead of sticking to the wall, fluid will stick to the sump at the bottom of the tank, where we want it," Marsell said.

If that proves to be the case, liquid-repellant coatings can be used to design more efficient storage tanks for propellants and other essential fluids for long-duration space flights. Keeping cryogenic propellants off tank walls also will reduce the heat transferred to the fluid and, therefore, the amount of propellant lost to boil-off. That could greatly increase performance of spacecraft, enabling future missions to travel greater distances without increasing the amount of fuel storage.

Coatings also offer other potential advantages. "The sponges, vanes, baffles and other structures placed inside fuel tanks to move liquid where it is needed are all susceptible to breakage," Marsell said. "If we can replace these complicated metallic mechanisms with a coating, it will reduce the potential for things to break, as well as save weight and money."

"We know the coating will repel water, but we aren't sure what the fluid will do instead," said co-investigator Jacob Roth, who is also with the LSP. "We think it will bounce off the walls and stick to the bottom of the tank, the sump, where there is no coating. One question this test might answer is how well it sticks, how easy or difficult it is to dislodge the liquid from the sump when it sloshes around."

If the coating works as expected, the next step will be testing its use on an actual fuel tank for a spacecraft. Potential uses of the final technology include coating the fuel tanks of various rocket stages and in containers at propellant depots, or fuel stations in space. Scientists can design specific coatings to repel different liquids.

Understanding the function of liquid-repellent coatings in space might help with development of coatings with potential benefits on Earth. These could include better protection of electronics from water, improved water-resistance for clothing and gear, and preventing rain from blocking the view through windows on automobiles and aircraft.

Scientists may be able to guide liquid to flow just where it is needed, even where there is no "downhill."

###

Media Contact

Rachel Hobson
[email protected]
@NASA_Johnson

http://www.nasa.gov/centers/johnson/home

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Gene-Specific Sweeps Dominate Human Gut Microbiomes

December 18, 2025

Forensic Reporting Practices of Non-Fatal Injuries Examined

December 18, 2025

Remote Astrocytes Drive White Matter Repair

December 18, 2025

Analyzing Hospital Activity Growth: Key Influencing Factors

December 18, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gene-Specific Sweeps Dominate Human Gut Microbiomes

Forensic Reporting Practices of Non-Fatal Injuries Examined

Remote Astrocytes Drive White Matter Repair

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.