• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Keeping children safe in the ‘Internet of Things’ age

Bioengineer by Bioengineer
June 21, 2019
in Science
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Micro:Bit Educational Foundation

Children need protection when using programmable Internet computing devices – and Lancaster University scientists have drawn up new guidelines to help designers build in safeguards.

Young people are growing up in a digital world where everyday objects contain sensors and stream data to and from the Internet – a trend known collectively as the Internet of Things (IoT).

Children are also getting hands-on – using small-scale easy-to-program devices such as the BBC micro:bit to experiment and get creative with digital technologies.

These kinds of devices are very useful educational tools that children are using to build their knowledge and digital skills – and the developers of the BBC micro:bit took a very considered ethical approach to developing their device. However, unless properly considered, Internet-connected devices can present risks to children and others around them.

These risks can include peer-to-peer abuse or bullying, dangers of abuse by adults, as well as risks related to the use, exploitation, commercialisation, or insecure management of any data the children generate by using the devices.

Dr Bran Knowles, Lecturer in Data Science at Lancaster University’s School of Computing and Communications, said: “Children who are learning to programme IoT devices still have critical gaps in their understanding of privacy and security. In addition, their parents may also lack technical understanding of IoT, which makes it difficult for them to help ensure their children are managing their privacy and keeping safe.

“Formal training is available for online safety issues such as social media bullying and sexting, but, as yet, there is no IoT component to this curriculum.

“It is essential therefore that the designers of these IoT devices anticipate the full spectrum of contexts in which children may use these devices and adopt strategies that will ensure they have properly considered, and mitigated, the potential safety and privacy risks to children and their families.

“Our research provides a framework to help designers approach these critical risks with their own devices, while still enabling these devices to have enough functions activated so that they still provide a fun learning experience.” she said.

The Lancaster University team’s methodology includes working with supervised groups of school children to explore a wide range of ways that young people may want to use Internet-connected computing devices.

The findings from these sessions, alongside findings from workshops with child safety experts, help designers to create fictionalised ‘use scenarios’ that provide a detailed picture of how children will use the devices. Key questions can emerge from these scenarios that form the basis for developing risk mitigation checklists when designing digital tools.

###

The research, which was funded by the Engineering and Physical Sciences Research Council (EPSRC), part of UK Research and Innovation (UKRI), through The PETRAS (privacy, ethics, trust, reliability, acceptability, and security) National Centre of Excellence for IoT Systems Cybersecurity Research Hub (grant no: EP/N02334X/1) is outlined in the paper ‘A Scenario-Based Methodology for Exploring Risks: Children and programmable IoT’, which is to be presented at the Designing interactive Systems (DIS 2019) conference.

The paper has received an ‘Honourable Mention for Best Paper’ at DIS 2019.

The paper’s authors are Bran Knowles, Sophie Beck, Joe Finney, James Devine and Joseph Lindley all of Lancaster University’s School of Computing and Communications.

Media Contact
Gillian Whitworth
[email protected]

Tags: Computer ScienceHardwareInternetSoftware EngineeringSystem Security/HackersTechnology/Engineering/Computer ScienceTheory/Design
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    56 shares
    Share 22 Tweet 14
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.