• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Keeping cells together – how our body resists mechanical stress

Bioengineer by Bioengineer
March 29, 2024
in Biology
Reading Time: 3 mins read
0
Fracturing of cell junctions in response to cell stretching in claudin/JAM-A KO cells
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Our body consists of ~30 trillion cells. These cells need to tightly attach to each other to maintain the integrity of our body. However, we are constantly exposed to mechanical stress, which continuously challenges the integrity of our bodies. How are cells able to resist mechanical force to maintain the integrity of our body? Why doesn’t our body fall apart when we fall down on the street or when the guts move to digest the food? The secret lies in the cell-to-cell adhesion apparatus that keeps our cells together.

Fracturing of cell junctions in response to cell stretching in claudin/JAM-A KO cells

Credit: Tetsuhisa Otani

Our body consists of ~30 trillion cells. These cells need to tightly attach to each other to maintain the integrity of our body. However, we are constantly exposed to mechanical stress, which continuously challenges the integrity of our bodies. How are cells able to resist mechanical force to maintain the integrity of our body? Why doesn’t our body fall apart when we fall down on the street or when the guts move to digest the food? The secret lies in the cell-to-cell adhesion apparatus that keeps our cells together.

Cells hold on to each other through junctions that serve to connect the neighboring cells. At least three types of junctions are known: tight junctions, adherens junctions, and desmosomes. Previous studies have shown that adherens junctions and desmosomes play critical roles in maintaining the integrity of our body. However, the roles of tight junctions in resisting mechanical stress have not been demonstrated to date.

One reason that hindered the attempts to understand the roles of tight junctions was that it had been difficult to specifically and completely eliminate its activity due to the overlapping functions of its key constituents. A few years ago, the research group succeeded in generating an epithelial cell line that specifically and completely lacks tight junction membrane proteins claudins and JAM-A, and demonstrated that these cells completely lack tight junctions.

In carefully examining these cells, the researchers found something bizarre. While normal cells are always connected to each other by a continuous belt of cell-to-cell junctions, sporadic disruption and fragmentation of cell-to-cell junctions were observed in these cells. “We had never seen something like this before and became curious about this issue”, said the first author Thanh Phuong Nguyen.

The researchers decided to take a movie to find out how the junctions become broken in these cells and found that the junctions fractured when the cells were stretched. The research group further showed that tight junction membrane proteins regulate the conformation change of a protein called ZO-1 in response to mechanical force, suggesting that this mechanosensor is important for cells to resist mechanical stress.

Mikio Furuse, the leading scientist of the study says “This study shows that tight junctions in addition to adherens junctions and desmosomes are important for cells to resist mechanical stress. An interesting question is why we need so many junctions to resist force, and how these junctions collaborate to provide mechanical resistance. We would like to tackle these issues in the future.”.



Journal

Journal of Cell Biology

DOI

10.1083/jcb.202307104

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Tight junction membrane proteins regulate the mechanical resistance of the apical junctional complex.

Share12Tweet8Share2ShareShareShare2

Related Posts

DOG Gene Family in Wheat Drives Seed Dormancy

DOG Gene Family in Wheat Drives Seed Dormancy

October 4, 2025
blank

Discovery of MrSTP20: Sugar Transporter in Salt Stress

October 4, 2025

SNARE Neofunctionalization Driven by Vacuole Retrieval

October 4, 2025

Exploring Shigella Phage Sf14’s tRNA Contributions

October 3, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Key Skills for New ICU Nurses in Iran

Acylation Shapes Immunotherapy Success in Liver Cancer

EYA1 Boosts Colorectal Cancer Angiogenesis via HIF-1β Activation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.