• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Keanu Reeves – the molecule

Bioengineer by Bioengineer
February 6, 2023
in Biology
Reading Time: 4 mins read
0
Pseudomonas bacteria are toxic to amoebae
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Bacteria of the genus Pseudomonas produce a strong antimicrobial natural product, as researchers at the Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) in Jena, Germany, have discovered. They proved that the substance is effective against both plant fungal diseases and human-pathogenic fungi. The study was published in the Journal of the American Chemical Society.

Pseudomonas bacteria are toxic to amoebae

Credit: Harikumar Suma/Leibniz-HKI

Bacteria of the genus Pseudomonas produce a strong antimicrobial natural product, as researchers at the Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) in Jena, Germany, have discovered. They proved that the substance is effective against both plant fungal diseases and human-pathogenic fungi. The study was published in the Journal of the American Chemical Society.

The newly discovered natural product group of keanumycins in bacteria works effectively against the plant pest Botrytis cinerea, which triggers grey mould rot and causes immense harvest losses every year. But the active ingredient also inhibits fungi that are dangerous to humans, such as Candida albicans. According to previous studies, it is harmless to plant and human cells.

Keanumycins could therefore be an environmentally friendly alternative to chemical pesticides, but they could also offer an alternative in the fight against resistant fungi. “We have a crisis in anti-infectives,” explains Sebastian Götze, first author of the study and postdoc at Leibniz-HKI. “Many human-pathogenic fungi are now resistant to antimycotics – partly because they are used in large quantities in agricultural fields.”

Deadly like Keanu Reeves

The fact that the researchers have now found a new active ingredient in bacteria of the genus Pseudomonas is no coincidence. “We have been working with pseudomonads for some time and know that many of these bacterial species are very toxic to amoebae, which feed on bacteria,” says study leader Pierre Stallforth. He is the head of the department of Paleobiotechnology at Leibniz-HKI and professor of Bioorganic Chemistry and Paleobiotechnology at Friedrich Schiller University in Jena. It appears that several toxins are responsible for the deadly effect of the bacteria, of which only one was known so far. In the genome of the bacteria, the researchers have now found biosynthesis genes for the newly discovered natural products, the keanumycins A, B and C. This group of natural products belongs to the nonribosomal lipopeptides with soap-like properties.

Together with colleagues at the Bio Pilot Plant of the Leibniz-HKI, the researchers succeeded in isolating one of the keanumycins and conducting further tests. “The lipopeptides kill so efficiently that we named them after Keanu Reeves because he, too, is extremely deadly in his roles,” Götze explains with a wink.

The researchers suspected that keanumycins could also kill fungi, as these resemble amoebas in certain characteristics. This assumption was confirmed together with the Research Centre for Horticultural Crops at the University of Applied Sciences Erfurt. There, Keanumycin was shownto be effective against grey mould rot on hydrangea leaves. In this case, culture fluid that no longer contained bacterial cells was sufficient to significantly inhibit the growth of the fungus.

“Theoretically, the keanumycin-containing supernatant from Pseudomonas cultures could be used directly for plants,” says Götze. Further testing will be carried out together with the colleagues in Erfurt. Keanumycin is biodegradable, so no permanent residues should form in the soil. This means that the natural product has the potential to become an environmentally friendly alternative to chemical pesticides.

Fungal diseases such as Botrytis cinerea, which causes grey mould rot, cause immense harvest losses in fruit and vegetable cultivation every year. More than 200 different types of fruit and vegetables are affected, especially strawberries and unripe grapes.

Possible applications in humans

“In addition, we tested the isolated substance against various fungi that infect humans. We found that it strongly inhibits the pathogenic fungus Candida albicans, among others,” says Götze.

Instead of plants, Keanumycin could therefore possibly also be used in humans. According to the tests conducted so far, the natural product is not highly toxic for human cells and is already effective against fungi in very low concentrations. This makes it a good candidate for the pharmaceutical development of new antimycotics. These are also urgently needed, as there are very few drugs against fungal infections on the market.

The work was supported by the Werner Siemens Foundation, the Leibniz Association and the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) as part of the Balance of the Microverse Cluster of Excellence, and funded by the Dr. Illing Foundation.

The study was highlighted by Nature in a “News & Views” article.



Journal

Journal of the American Chemical Society

DOI

10.1021/jacs.2c11107

Method of Research

Experimental study

Article Title

Ecological niche-inspired genome mining leads to the discovery of crop-protecting nonribosomal lipopeptides featuring a transient amino acid building block

Article Publication Date

20-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

November 2, 2025
Overcoming Batch Effects in Single-Cell RNA-seq Datasets

Overcoming Batch Effects in Single-Cell RNA-seq Datasets

November 2, 2025

Unraveling CpG Island Methylation Through Read Bias Analysis

November 2, 2025

Unraveling Resistance Genes in Photorhabdus Bacteria

November 2, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Upward Bullying in China’s Nurse Managers

Quantum Network Entanglement Verified Without Measurement Devices

Exploring Non-Cavity Modes in Micropillar Bragg Microcavities

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.