• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Jellyfish fluorescence shines new light on DNA copying

Bioengineer by Bioengineer
June 27, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Using these proteins, originally found in jellyfish to make them glow, the team where able to focus laser beams on the brightly lit proteins and track them inside a bacteria that normally lives inside the human gut.

This allowed scientists to watch the molecular machinery of DNA as it replicated inside a cell one molecule at a time. It revealed for the first time that only one component of this process, called DnaB helicase, remains stable – like a molecular anchor to the process.

In most cells, whether human or bacterial, a new cell is created after an existing cell divides in two. This means that a copy of the original sequence of genes coded in its DNA must be precisely copied and placed into the new cell.

This is thought to be a process that occurs slowly and methodically at set points in time. New research at the University of York, in collaboration with the University of Oxford and McGill University Canada, however, has now tracked this replication process in real-time and shown that it is far more dynamic than the textbooks suggest, occurring instead through a 'stuttering-like process' in short bursts.

Using these proteins, originally found in jellyfish to make them glow, the team where able to focus laser beams on the brightly lit proteins and track them inside a bacteria that normally lives inside the human gut.

This allowed scientists to watch the molecular machinery of DNA as it replicated inside a cell one molecule at a time. It revealed for the first time that only one component of this process, called DnaB helicase, remains stable – like a molecular anchor to the process.

In most cells, whether human or bacterial, a new cell is created after an existing cell divides in two. This means that a copy of the original sequence of genes coded in its DNA must be precisely copied and placed into the new cell.

This is thought to be a process that occurs slowly and methodically at set points in time. New research at the University of York, in collaboration with the University of Oxford and McGill University Canada, however, has now tracked this replication process in real-time and shown that it is far more dynamic than the textbooks suggest, occurring instead through a 'stuttering-like process' in short bursts.

The process of DNA replication is fundamental to all life and the way errors in the process are resolved is especially important to human health. Errors can give rise to forms of cancer and become more prevalent in an ageing population.

This work will help scientists not only understand more fully the basic building blocks of life but potentially also provides new insights into a range of health conditions as well as even shedding new light on how human ageing can give rise to diseases associated with errors in copying the DNA from cell to cell.

Research was conducted using the DNA of Escherichia coli cell, bacteria, but However, the next stage of this research will investigate the same process in more complex cells, ultimately including those from humans.

###

The research, 'Frequent exchange of DNA polymerase during bacterial chromosome replication', was supported by the BBSRC and is published in the journal, eLife

Media Contact

Samantha Martin
[email protected]
01-904-322-029
@uniofyork

http://www.york.ac.uk

http://dx.doi.org/10.7554/eLife.21763

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

ProteinFormer: Transforming Protein Localization with Bioimages

ProteinFormer: Transforming Protein Localization with Bioimages

November 9, 2025
blank

Impact of Perfluoroalkyl Substances on E. coli Phases

November 9, 2025

MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

November 9, 2025

First Hybrid Eriocheir Discovery in Mediterranean Sea

November 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Social Support’s Impact on Geriatric Cancer Patients

Red Blood Cells and Tumor Cells: A Pro-Metastatic Link?

Major Global Study Finds Beta-Blockers Unnecessary for Post-Infarction Patients with Normal Cardiac Function

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.